Guidance for reporting a genetic association study

This advice is relevant to studies reporting genetic associations and is based on the STREGA guidelines.  Read more

The following information was originally published here.

Go to checklist

Title and abstract

1a Title

Indicate the study’s design with a commonly used term in the title or the abstract.

Readers should be able to easily identify the design that was used from the title or abstract. An explicit, commonly used term for the study design also helps ensure correct indexing of articles in electronic databases.

1b Abstract

Provide in the abstract an informative and balanced summary of what was done and what was found.

The abstract provides key information that enables readers to understand a study and decide whether to read the article. Typical components include a statement of the research question, a short description of methods and results, and a conclusion. Abstracts should summarize key details of studies and should only present information that is provided in the article. We advise presenting key results in a numerical form that includes numbers of participants, estimates of associations and appropriate measures of variability and uncertainty (e.g., odds ratios with confidence intervals). We regard it insufficient to state only that an exposure is or is not significantly associated with an outcome.

A series of headings pertaining to the background, design, conduct, and analysis of a study may help readers acquire the essential information rapidly. Many journals require such structured abstracts, which tend to be of higher quality and more readily informative than unstructured summaries.

Background/rationale

2.

Explain the scientific background and rationale for the investigation being reported.

The scientific background of the study provides important context for readers. It sets the stage for the study and describes its focus. It gives an overview of what is known on a topic and what gaps in current knowledge are addressed by the study. Background material should note recent pertinent studies and any systematic reviews of pertinent studies.

Objectives

3.

State specific objectives, including any prespecified hypotheses. State if the study is the first report of a genetic association, a replication effort, or both.

Objectives are the detailed aims of the study. Well crafted objectives specify populations, exposures and outcomes, and parameters that will be estimated. They may be formulated as specific hypotheses or as questions that the study was designed to address. In some situations objectives may be less specific, for example, in early discovery phases. Regardless, the report should clearly reflect the investigators' intentions. For example, if important subgroups or additional analyses were not the original aim of the study but arose during data analysis, they should be described accordingly (see also items 4, 17 and 20).

Study design

4.

Present key elements of study design early in the paper.

We advise presenting key elements of study design early in the methods section (or at the end of the introduction) so that readers can understand the basics of the study. For example, authors should indicate that the study was a cohort study, which followed people over a particular time period, and describe the group of persons that comprised the cohort and their exposure status. Similarly, if the investigation used a case-control design, the cases and controls and their source population should be described. If the study was a cross-sectional survey, the population and the point in time at which the cross-section was taken should be mentioned. When a study is a variant of the three main study types, there is an additional need for clarity. For instance, for a case-crossover study, one of the variants of the case-control design, a succinct description of the principles was given in the example above [28].

We recommend that authors refrain from simply calling a study ‘prospective' or ‘retrospective' because these terms are ill defined [29]. One usage sees cohort and prospective as synonymous and reserves the word retrospective for case-control studies [30]. A second usage distinguishes prospective and retrospective cohort studies according to the timing of data collection relative to when the idea for the study was developed [31]. A third usage distinguishes prospective and retrospective case-control studies depending on whether the data about the exposure of interest existed when cases were selected [32]. Some advise against using these terms [33], or adopting the alternatives ‘concurrent' and ‘historical' for describing cohort studies [34]. In STROBE, we do not use the words prospective and retrospective, nor alternatives such as concurrent and historical. We recommend that, whenever authors use these words, they define what they mean. Most importantly, we recommend that authors describe exactly how and when data collection took place.

The first part of the methods section might also be the place to mention whether the report is one of several from a study. If a new report is in line with the original aims of the study, this is usually indicated by referring to an earlier publication and by briefly restating the salient features of the study. However, the aims of a study may also evolve over time. Researchers often use data for purposes for which they were not originally intended, including, for example, official vital statistics that were collected primarily for administrative purposes, items in questionnaires that originally were only included for completeness, or blood samples that were collected for another purpose. For example, the Physicians' Health Study, a randomized controlled trial of aspirin and carotene, was later used to demonstrate that a point mutation in the factor V gene was associated with an increased risk of venous thrombosis, but not of myocardial infarction or stroke [35]. The secondary use of existing data is a creative part of observational research and does not necessarily make results less credible or less important. However, briefly restating the original aims might help readers understand the context of the research and possible limitations in the data.

Setting

5.

Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection.

Readers need information on setting and locations to assess the context and generalisability of a study's results. Exposures such as environmental factors and therapies can change over time. Also, study methods may evolve over time. Knowing when a study took place and over what period participants were recruited and followed up places the study in historical context and is important for the interpretation of results.

Information about setting includes recruitment sites or sources (e.g., electoral roll, outpatient clinic, cancer registry, or tertiary care centre). Information about location may refer to the countries, towns, hospitals or practices where the investigation took place. We advise stating dates rather than only describing the length of time periods. There may be different sets of dates for exposure, disease occurrence, recruitment, beginning and end of follow-up, and data collection. Of note, nearly 80% of 132 reports in oncology journals that used survival analysis included the starting and ending dates for accrual of patients, but only 24% also reported the date on which follow-up ended [37].

Eligibility criteria

6a

Cohort study – Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up. Case-control study – Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls. Cross-sectional study – Give the eligibility criteria, and the sources and methods of selection of participants. Give information on the criteria and methods for selection of subsets of participants from a larger study, when relevant.

Detailed descriptions of the study participants help readers understand the applicability of the results. Investigators usually restrict a study population by defining clinical, demographic and other characteristics of eligible participants. Typical eligibility criteria relate to age, gender, diagnosis and comorbid conditions. Despite their importance, eligibility criteria often are not reported adequately. In a survey of observational stroke research, 17 of 49 reports (35%) did not specify eligibility criteria [5].

Eligibility criteria may be presented as inclusion and exclusion criteria, although this distinction is not always necessary or useful. Regardless, we advise authors to report all eligibility criteria and also to describe the group from which the study population was selected (e.g., the general population of a region or country), and the method of recruitment (e.g., referral or self-selection through advertisements).

Knowing details about follow-up procedures, including whether procedures minimized non-response and loss to follow-up and whether the procedures were similar for all participants, informs judgments about the validity of results. For example, in a study that used IgM antibodies to detect acute infections, readers needed to know the interval between blood tests for IgM antibodies so that they could judge whether some infections likely were missed because the interval between blood tests was too long [41]. In other studies where follow-up procedures differed between exposed and unexposed groups, readers might recognize substantial bias due to unequal ascertainment of events or differences in non-response or loss to follow-up [42]. Accordingly, we advise that researchers describe the methods used for following participants and whether those methods were the same for all participants, and that they describe the completeness of ascertainment of variables (see also item 14).

In case-control studies, the choice of cases and controls is crucial to interpreting the results, and the method of their selection has major implications for study validity. In general, controls should reflect the population from which the cases arose. Various methods are used to sample controls, all with advantages and disadvantages: for cases that arise from a general population, population roster sampling, random digit dialling, neighbourhood or friend controls are used. Neighbourhood or friend controls may present intrinsic matching on exposure [17]. Controls with other diseases may have advantages over population-based controls, in particular for hospital-based cases, because they better reflect the catchment population of a hospital, have greater comparability of recall and ease of recruitment. However, they can present problems if the exposure of interest affects the risk of developing or being hospitalized for the control condition(s) [43,44]. To remedy this problem often a mixture of the best defensible control diseases is used [45].

6b

Cohort study – For matched studies, give matching criteria and number of exposed and unexposed. Case-control study – For matched studies, give matching criteria and the number of controls per case.

Matching is much more common in case-control studies, but occasionally, investigators use matching in cohort studies to make groups comparable at the start of follow-up. Matching in cohort studies makes groups directly comparable for potential confounders and presents fewer intricacies than with case-control studies. For example, it is not necessary to take the matching into account for the estimation of the relative risk [48]. Because matching in cohort studies may increase statistical precision investigators might allow for the matching in their analyses and thus obtain narrower confidence intervals.

In case-control studies matching is done to increase a study's efficiency by ensuring similarity in the distribution of variables between cases and controls, in particular the distribution of potential confounding variables [48,49]. Because matching can be done in various ways, with one or more controls per case, the rationale for the choice of matching variables and the details of the method used should be described. Commonly used forms of matching are frequency matching (also called group matching) and individual matching. In frequency matching, investigators choose controls so that the distribution of matching variables becomes identical or similar to that of cases. Individual matching involves matching one or several controls to each case. Although intuitively appealing and sometimes useful, matching in case-control studies has a number of disadvantages, is not always appropriate, and needs to be taken into account in the analysis.

Variables

7a

Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable.

Authors should define all variables considered for and included in the analysis, including outcomes, exposures, predictors, potential confounders and potential effect modifiers. Disease outcomes require adequately detailed description of the diagnostic criteria. This applies to criteria for cases in a case-control study, disease events during follow-up in a cohort study and prevalent disease in a cross-sectional study. Clear definitions and steps taken to adhere to them are particularly important for any disease condition of primary interest in the study.

For some studies, ‘determinant' or ‘predictor' may be appropriate terms for exposure variables and outcomes may be called ‘endpoints'. In multivariable models, authors sometimes use ‘dependent variable' for an outcome and ‘independent variable' or ‘explanatory variable' for exposure and confounding variables. The latter is not precise as it does not distinguish exposures from confounders.

If many variables have been measured and included in exploratory analyses in an early discovery phase, consider providing a list with details on each variable in an appendix, additional table or separate publication. Of note, the International Journal of Epidemiology recently launched a new section with ‘cohort profiles', that includes detailed information on what was measured at different points in time in particular studies [56,57]. Finally, we advise that authors declare all ‘candidate variables' considered for statistical analysis, rather than selectively reporting only those included in the final models (see also item 16a) [58,59].

7b

Clearly define genetic exposures (genetic variants) using a widely-used nomenclature system. Identify variables likely to be associated with population stratification (confounding by ethnic origin).

Data sources/measurement

8a

For each variable of interest give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group. Give information separately for for exposed and unexposed groups if applicable.

The way in which exposures, confounders and outcomes were measured affects the reliability and validity of a study. Measurement error and misclassification of exposures or outcomes can make it more difficult to detect cause-effect relationships, or may produce spurious relationships. Error in measurement of potential confounders can increase the risk of residual confounding [62,63]. It is helpful, therefore, if authors report the findings of any studies of the validity or reliability of assessments or measurements, including details of the reference standard that was used. Rather than simply citing validation studies (as in the first example), we advise that authors give the estimated validity or reliability, which can then be used for measurement error adjustment or sensitivity analyses (see items 12e and 17).

In addition, it is important to know if groups being compared differed with respect to the way in which the data were collected. This may be important for laboratory examinations (as in the second example) and other situations. For instance, if an interviewer first questions all the cases and then the controls, or vice versa, bias is possible because of the learning curve; solutions such as randomising the order of interviewing may avoid this problem. Information bias may also arise if the compared groups are not given the same diagnostic tests or if one group receives more tests of the same kind than another (see also item 9).

8b

Describe laboratory methods, including source and storage of DNA, genotyping methods and platforms (including the allele calling algorithm used, and its version), error rates and call rates. State the laboratory / centre where genotyping was done. Describe comparability of laboratory methods if there is more than one group. Specify whether genotypes were assigned using all of the data from the study simultaneously or in smaller batches.

Bias

9a

Describe any efforts to address potential sources of bias.

Biased studies produce results that differ systematically from the truth (see also Box 3). It is important for a reader to know what measures were taken during the conduct of a study to reduce the potential of bias. Ideally, investigators carefully consider potential sources of bias when they plan their study. At the stage of reporting, we recommend that authors always assess the likelihood of relevant biases. Specifically, the direction and magnitude of bias should be discussed and, if possible, estimated. For instance, in case-control studies information bias can occur, but may be reduced by selecting an appropriate control group, as in the first example [64]. Differences in the medical surveillance of participants were a problem in the second example [65]. Consequently, the authors provide more detail about the additional data they collected to tackle this problem. When investigators have set up quality control programs for data collection to counter a possible “drift” in measurements of variables in longitudinal studies, or to keep variability at a minimum when multiple observers are used, these should be described.

Unfortunately, authors often do not address important biases when reporting their results. Among 43 case-control and cohort studies published from 1990 to 1994 that investigated the risk of second cancers in patients with a history of cancer, medical surveillance bias was mentioned in only 5 articles [66]. A survey of reports of mental health research published during 1998 in three psychiatric journals found that only 13% of 392 articles mentioned response bias [67]. A survey of cohort studies in stroke research found that 14 of 49 (28%) articles published from 1999 to 2003 addressed potential selection bias in the recruitment of study participants and 35 (71%) mentioned the possibility that any type of bias may have affected results.

9b

Describe any efforts to address potential sources of bias.

For quantitative outcome variables, specify if any investigation of potential bias resulting from pharmacotherapy was undertaken. If relevant, describe the nature and magnitude of the potential bias, and explain what approach was used to deal with this.

Study size

10.

Explain how the study size was arrived at.

A study should be large enough to obtain a point estimate with a sufficiently narrow confidence interval to meaningfully answer a research question. Large samples are needed to distinguish a small association from no association. Small studies often provide valuable information, but wide confidence intervals may indicate that they contribute less to current knowledge in comparison with studies providing estimates with narrower confidence intervals. Also, small studies that show ‘interesting' or ‘statistically significant' associations are published more frequently than small studies that do not have ‘significant' findings. While these studies may provide an early signal in the context of discovery, readers should be informed of their potential weaknesses.

The importance of sample size determination in observational studies depends on the context. If an analysis is performed on data that were already available for other purposes, the main question is whether the analysis of the data will produce results with sufficient statistical precision to contribute substantially to the literature, and sample size considerations will be informal. Formal, a priori calculation of sample size may be useful when planning a new study. Such calculations are associated with more uncertainty than implied by the single number that is generally produced. For example, estimates of the rate of the event of interest or other assumptions central to calculations are commonly imprecise, if not guesswork. The precision obtained in the final analysis can often not be determined beforehand because it will be reduced by inclusion of confounding variables in multivariable analyses, the degree of precision with which key variables can be measured, and the exclusion of some individuals.

Few epidemiological studies explain or report deliberations about sample size. We encourage investigators to report pertinent formal sample size calculations if they were done. In other situations they should indicate the considerations that determined the study size (e.g., a fixed available sample, as in the first example above). If the observational study was stopped early when statistical significance was achieved, readers should be told. Do not bother readers with post hoc justifications for study size or retrospective power calculations. From the point of view of the reader, confidence intervals indicate the statistical precision that was ultimately obtained. It should be realized that confidence intervals reflect statistical uncertainty only, and not all uncertainty that may be present in a study (see item 20).

Quantitative variables

11.

Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why. If applicable, describe how effects of treatment were dealt with.

Investigators make choices regarding how to collect and analyse quantitative data about exposures, effect modifiers and confounders. For example, they may group a continuous exposure variable to create a new categorical variable. Grouping choices may have important consequences for later analyses. We advise that authors explain why and how they grouped quantitative data, including the number of categories, the cut-points, and category mean or median values. Whenever data are reported in tabular form, the counts of cases, controls, persons at risk, person-time at risk, etc. should be given for each category. Tables should not consist solely of effect-measure estimates or results of model fitting.

Investigators might model an exposure as continuous in order to retain all the information. In making this choice, one needs to consider the nature of the relationship of the exposure to the outcome. As it may be wrong to assume a linear relation automatically, possible departures from linearity should be investigated. Authors could mention alternative models they explored during analyses (e.g., using log transformation, quadratic terms or spline functions). Several methods exist for fitting a non-linear relation between the exposure and outcome. Also, it may be informative to present both continuous and grouped analyses for a quantitative exposure of prime interest.

In a recent survey, two thirds of epidemiological publications studied quantitative exposure variables. In 42 of 50 articles (84%) exposures were grouped into several ordered categories, but often without any stated rationale for the choices made. Fifteen articles used linear associations to model continuous exposure but only two reported checking for linearity. In another survey, of the psychological literature, dichotomization was justified in only 22 of 110 articles (20%).

Statistical methods

12a

Describe all statistical methods, including those used to control for confounding. State software version used and options (or settings) chosen.

In general, there is no one correct statistical analysis but, rather, several possibilities that may address the same question, but make different assumptions. Regardless, investigators should pre-determine analyses at least for the primary study objectives in a study protocol. Often additional analyses are needed, either instead of, or as well as, those originally envisaged, and these may sometimes be motivated by the data. When a study is reported, authors should tell readers whether particular analyses were suggested by data inspection. Even though the distinction between pre-specified and exploratory analyses may sometimes be blurred, authors should clarify reasons for particular analyses.

If groups being compared are not similar with regard to some characteristics, adjustment should be made for possible confounding variables by stratification or by multivariable regression (see Box 5) [94]. Often, the study design determines which type of regression analysis is chosen. For instance, Cox proportional hazard regression is commonly used in cohort studies [95]. whereas logistic regression is often the method of choice in case-control studies [96,97]. Analysts should fully describe specific procedures for variable selection and not only present results from the final model [98,99]. If model comparisons are made to narrow down a list of potential confounders for inclusion in a final model, this process should be described. It is helpful to tell readers if one or two covariates are responsible for a great deal of the apparent confounding in a data analysis. Other statistical analyses such as imputation procedures, data transformation, and calculations of attributable risks should also be described. Non-standard or novel approaches should be referenced and the statistical software used reported. As a guiding principle, we advise statistical methods be described “with enough detail to enable a knowledgeable reader with access to the original data to verify the reported results” [100].

In an empirical study, only 93 of 169 articles (55%) reporting adjustment for confounding clearly stated how continuous and multi-category variables were entered into the statistical model [101]. Another study found that among 67 articles in which statistical analyses were adjusted for confounders, it was mostly unclear how confounders were chosen.

12b

Describe any methods used to examine subgroups and interactions.

As discussed in detail under item 17, many debate the use and value of analyses restricted to subgroups of the study population [4,104]. Subgroup analyses are nevertheless often done [4]. Readers need to know which subgroup analyses were planned in advance, and which arose while analysing the data. Also, it is important to explain what methods were used to examine whether effects or associations differed across groups (see item 17).

Interaction relates to the situation when one factor modifies the effect of another (therefore also called ‘effect modification'). The joint action of two factors can be characterized in two ways: on an additive scale, in terms of risk differences; or on a multiplicative scale, in terms of relative risk (see Box 8). Many authors and readers may have their own preference about the way interactions should be analysed. Still, they may be interested to know to what extent the joint effect of exposures differs from the separate effects. There is consensus that the additive scale, which uses absolute risks, is more appropriate for public health and clinical decision making [105]. Whatever view is taken, this should be clearly presented to the reader, as is done in the example above [103]. A lay-out presenting separate effects of both exposures as well as their joint effect, each relative to no exposure, might be most informative. It is presented in the example for interaction under item 17, and the calculations on the different scales are explained in Box 8.

12c

Explain how missing data were addressed.

Missing data are common in observational research. Questionnaires posted to study participants are not always filled in completely, participants may not attend all follow-up visits and routine data sources and clinical databases are often incomplete. Despite its ubiquity and importance, few papers report in detail on the problem of missing data [5,107]. Investigators may use any of several approaches to address missing data. We describe some strengths and limitations of various approaches in Box 6. We advise that authors report the number of missing values for each variable of interest (exposures, outcomes, confounders) and for each step in the analysis. Authors should give reasons for missing values if possible, and indicate how many individuals were excluded because of missing data when describing the flow of participants through the study (see also item 13). For analyses that account for missing data, authors should describe the nature of the analysis (e.g., multiple imputation) and the assumptions that were made (e.g., missing at random, see Box 6).

12d

If applicable, explain how loss to follow-up was addressed.

Cohort studies are analysed using life table methods or other approaches that are based on the person-time of follow-up and time to developing the disease of interest. Among individuals who remain free of the disease at the end of their observation period, the amount of follow-up time is assumed to be unrelated to the probability of developing the outcome. This will be the case if follow-up ends on a fixed date or at a particular age. Loss to follow-up occurs when participants withdraw from a study before that date. This may hamper the validity of a study if loss to follow-up occurs selectively in exposed individuals, or in persons at high risk of developing the disease (‘informative censoring'). In the example above, patients lost to follow-up in treatment programmes with no active follow-up had fewer CD4 helper cells than those remaining under observation and were therefore at higher risk of dying [116].

It is important to distinguish persons who reach the end of the study from those lost to follow-up. Unfortunately, statistical software usually does not distinguish between the two situations: in both cases follow-up time is automatically truncated (‘censored') at the end of the observation period. Investigators therefore need to decide, ideally at the stage of planning the study, how they will deal with loss to follow-up. When few patients are lost, investigators may either exclude individuals with incomplete follow-up, or treat them as if they withdrew alive at either the date of loss to follow-up or the end of the study. We advise authors to report how many patients were lost to follow-up and what censoring strategies they used.

12e

Describe any sensitivity analyses.

Sensitivity analyses are useful to investigate whether or not the main results are consistent with those obtained with alternative analysis strategies or assumptions [121]. Issues that may be examined include the criteria for inclusion in analyses, the definitions of exposures or outcomes [122], which confounding variables merit adjustment, the handling of missing data [120,123], possible selection bias or bias from inaccurate or inconsistent measurement of exposure, disease and other variables, and specific analysis choices, such as the treatment of quantitative variables (see item 11). Sophisticated methods are increasingly used to simultaneously model the influence of several biases or assumptions [124–126].

In 1959 Cornfield et al. famously showed that a relative risk of 9 for cigarette smoking and lung cancer was extremely unlikely to be due to any conceivable confounder, since the confounder would need to be at least nine times as prevalent in smokers as in non-smokers [127]. This analysis did not rule out the possibility that such a factor was present, but it did identify the prevalence such a factor would need to have. The same approach was recently used to identify plausible confounding factors that could explain the association between childhood leukaemia and living near electric power lines [128]. More generally, sensitivity analyses can be used to identify the degree of confounding, selection bias, or information bias required to distort an association. One important, perhaps under recognised, use of sensitivity analysis is when a study shows little or no association between an exposure and an outcome and it is plausible that confounding or other biases toward the null are present.

12f

State whether Hardy-Weinberg equilibrium was considered and, if so, how.

12g

Describe any methods used for inferring genotypes or haplotypes.

12h

Describe any methods used to assess or address population stratification.

12i

Describe any methods used to address multiple comparisons or to control risk of false positive findings.

12j

Describe any methods used to address and correct for relatedness among subjects.

Participants

13a

Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed. Give information separately for for exposed and unexposed groups if applicable. Report numbers of individuals in whom genotyping was attempted and numbers of individuals in whom genotyping was successful.

Detailed information on the process of recruiting study participants is important for several reasons. Those included in a study often differ in relevant ways from the target population to which results are applied. This may result in estimates of prevalence or incidence that do not reflect the experience of the target population. For example, people who agreed to participate in a postal survey of sexual behaviour attended church less often, had less conservative sexual attitudes and earlier age at first sexual intercourse, and were more likely to smoke cigarettes and drink alcohol than people who refused [130]. These differences suggest that postal surveys may overestimate sexual liberalism and activity in the population. Such response bias (see Box 3) can distort exposure-disease associations if associations differ between those eligible for the study and those included in the study. As another example, the association between young maternal age and leukaemia in offspring, which has been observed in some case-control studies [131,132], was explained by differential participation of young women in case and control groups. Young women with healthy children were less likely to participate than those with unhealthy children [133]. Although low participation does not necessarily compromise the validity of a study, transparent information on participation and reasons for non-participation is essential. Also, as there are no universally agreed definitions for participation, response or follow-up rates, readers need to understand how authors calculated such proportions [134].

Ideally, investigators should give an account of the numbers of individuals considered at each stage of recruiting study participants, from the choice of a target population to the inclusion of participants' data in the analysis. Depending on the type of study, this may include the number of individuals considered to be potentially eligible, the number assessed for eligibility, the number found to be eligible, the number included in the study, the number examined, the number followed up and the number included in the analysis. Information on different sampling units may be required, if sampling of study participants is carried out in two or more stages as in the example above (multistage sampling). In case-control studies, we advise that authors describe the flow of participants separately for case and control groups [135]. Controls can sometimes be selected from several sources, including, for example, hospitalised patients and community dwellers. In this case, we recommend a separate account of the numbers of participants for each type of control group. Olson and colleagues proposed useful reporting guidelines for controls recruited through random-digit dialling and other methods [136].

A recent survey of epidemiological studies published in 10 general epidemiology, public health and medical journals found that some information regarding participation was provided in 47 of 107 case-control studies (59%), 49 of 154 cohort studies (32%), and 51 of 86 cross-sectional studies (59%) [137]. Incomplete or absent reporting of participation and non-participation in epidemiological studies was also documented in two other surveys of the literature [4,5]. Finally, there is evidence that participation in epidemiological studies may have declined in recent decades [137,138], which underscores the need for transparent reporting.

13b

Give reasons for non-participation at each stage.

Explaining the reasons why people no longer participated in a study or why they were excluded from statistical analyses helps readers judge whether the study population was representative of the target population and whether bias was possibly introduced. For example, in a cross-sectional health survey, non-participation due to reasons unlikely to be related to health status (for example, the letter of invitation was not delivered because of an incorrect address) will affect the precision of estimates but will probably not introduce bias. Conversely, if many individuals opt out of the survey because of illness, or perceived good health, results may underestimate or overestimate the prevalence of ill health in the population.

13c

Consider use of a flow diagram.

An informative and well-structured flow diagram can readily and transparently convey information that might otherwise require a lengthy description [142], as in the example above. The diagram may usefully include the main results, such as the number of events for the primary outcome. While we recommend the use of a flow diagram, particularly for complex observational studies, we do not propose a specific format for the diagram.

Descriptive data

14a

Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders. Give information separately for exposed and unexposed groups if applicable. Consider giving information by genotype.

Readers need descriptions of study participants and their exposures to judge the generalisability of the findings. Information about potential confounders, including whether and how they were measured, influences judgments about study validity. We advise authors to summarize continuous variables for each study group by giving the mean and standard deviation, or when the data have an asymmetrical distribution, as is often the case, the median and percentile range (e.g., 25th and 75th percentiles). Variables that make up a small number of ordered categories (such as stages of disease I to IV) should not be presented as continuous variables; it is preferable to give numbers and proportions for each category (see also Box 4). In studies that compare groups, the descriptive characteristics and numbers should be given by group, as in the example above.

Inferential measures such as standard errors and confidence intervals should not be used to describe the variability of characteristics, and significance tests should be avoided in descriptive tables. Also, P values are not an appropriate criterion for selecting which confounders to adjust for in analysis; even small differences in a confounder that has a strong effect on the outcome can be important.

In cohort studies, it may be useful to document how an exposure relates to other characteristics and potential confounders. Authors could present this information in a table with columns for participants in two or more exposure categories, which permits to judge the differences in confounders between these categories.

In case-control studies potential confounders cannot be judged by comparing cases and controls. Control persons represent the source population and will usually be different from the cases in many respects. For example, in a study of oral contraceptives and myocardial infarction, a sample of young women with infarction more often had risk factors for that disease, such as high serum cholesterol, smoking and a positive family history, than the control group [146]. This does not influence the assessment of the effect of oral contraceptives, as long as the prescription of oral contraceptives was not guided by the presence of these risk factors—e.g., because the risk factors were only established after the event (see also Box 5). In case-control studies the equivalent of comparing exposed and non-exposed for the presence of potential confounders (as is done in cohorts) can be achieved by exploring the source population of the cases: if the control group is large enough and represents the source population, exposed and unexposed controls can be compared for potential confounders [121,147].

14b

Indicate number of participants with missing data for each variable of interest.

As missing data may bias or affect generalisability of results, authors should tell readers amounts of missing data for exposures, potential confounders, and other important characteristics of patients (see also item 12c and Box 6). In a cohort study, authors should report the extent of loss to follow-up (with reasons), since incomplete follow-up may bias findings (see also items 12d and 13). We advise authors to use their tables and figures to enumerate amounts of missing data.

14c

Cohort study – Summarize follow-up time, e.g. average and total amount.

Readers need to know the duration and extent of follow-up for the available outcome data. Authors can present a summary of the average follow-up with either the mean or median follow-up time or both. The mean allows a reader to calculate the total number of person-years by multiplying it with the number of study participants. Authors also may present minimum and maximum times or percentiles of the distribution to show readers the spread of follow-up times. They may report total person-years of follow-up or some indication of the proportion of potential data that was captured [148]. All such information may be presented separately for participants in two or more exposure categories. Almost half of 132 articles in cancer journals (mostly cohort studies) did not give any summary of length of follow-up.

Outcome data

15.

Cohort study Report numbers of outcome events or summary measures over time.Give information separately for exposed and unexposed groups if applicable. Report outcomes (phenotypes) for each genotype category over time Case-control study – Report numbers in each exposure category, or summary measures of exposure.Give information separately for cases and controls . Report numbers in each genotype category. Cross-sectional study – Report numbers of outcome events or summary measures. Give information separately for exposed and unexposed groups if applicable. Report outcomes (phenotypes) for each genotype category.

Before addressing the possible association between exposures (risk factors) and outcomes, authors should report relevant descriptive data. It may be possible and meaningful to present measures of association in the same table that presents the descriptive data (see item 14a). In a cohort study with events as outcomes, report the numbers of events for each outcome of interest. Consider reporting the event rate per person-year of follow-up. If the risk of an event changes over follow-up time, present the numbers and rates of events in appropriate intervals of follow-up or as a Kaplan-Meier life table or plot. It might be preferable to show plots as cumulative incidence that go up from 0% rather than down from 100%, especially if the event rate is lower than, say, 30% [153]. Consider presenting such information separately for participants in different exposure categories of interest. If a cohort study is investigating other time-related outcomes (e.g., quantitative disease markers such as blood pressure), present appropriate summary measures (e.g., means and standard deviations) over time, perhaps in a table or figure.

For cross-sectional studies, we recommend presenting the same type of information on prevalent outcome events or summary measures. For case-control studies, the focus will be on reporting exposures separately for cases and controls as frequencies or quantitative summaries [154]. For all designs, it may be helpful also to tabulate continuous outcomes or exposures in categories, even if the data are not analysed as such.

Main results

16a

Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included.

In many situations, authors may present the results of unadjusted or minimally adjusted analyses and those from fully adjusted analyses. We advise giving the unadjusted analyses together with the main data, for example the number of cases and controls that were exposed or not. This allows the reader to understand the data behind the measures of association (see also item 15). For adjusted analyses, report the number of persons in the analysis, as this number may differ because of missing values in covariates (see also item 12c). Estimates should be given with confidence intervals.

Readers can compare unadjusted measures of association with those adjusted for potential confounders and judge by how much, and in what direction, they changed. Readers may think that ‘adjusted' results equal the causal part of the measure of association, but adjusted results are not necessarily free of random sampling error, selection bias, information bias, or residual confounding (see Box 5). Thus, great care should be exercised when interpreting adjusted results, as the validity of results often depends crucially on complete knowledge of important confounders, their precise measurement, and appropriate specification in the statistical model (see also item 20) [157,158].

Authors should explain all potential confounders considered, and the criteria for excluding or including variables in statistical models. Decisions about excluding or including variables should be guided by knowledge, or explicit assumptions, on causal relations. Inappropriate decisions may introduce bias, for example by including variables that are in the causal pathway between exposure and disease (unless the aim is to asses how much of the effect is carried by the intermediary variable). If the decision to include a variable in the model was based on the change in the estimate, it is important to report what change was considered sufficiently important to justify its inclusion. If a ‘backward deletion' or ‘forward inclusion' strategy was used to select confounders, explain that process and give the significance level for rejecting the null hypothesis of no confounding. Of note, we and others do not advise selecting confounders based solely on statistical significance testing [147,159,160].

Recent studies of the quality of reporting of epidemiological studies found that confidence intervals were reported in most articles [4]. However, few authors explained their choice of confounding variables [4,5].

16b

Report category boundaries when continuous variables were categorized.

Categorizing continuous data has several important implications for analysis (see Box 4) and also affects the presentation of results. In tables, outcomes should be given for each exposure category, for example as counts of persons at risk, person-time at risk, if relevant separately for each group (e.g., cases and controls). Details of the categories used may aid comparison of studies and meta-analysis. If data were grouped using conventional cut-points, such as body mass index thresholds [162], group boundaries (i.e., range of values) can be derived easily, except for the highest and lowest categories. If quantile-derived categories are used, the category boundaries cannot be inferred from the data. As a minimum, authors should report the category boundaries; it is helpful also to report the range of the data and the mean or median values within categories.

16c

If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period.

The results from studies examining the association between an exposure and a disease are commonly reported in relative terms, as ratios of risks, rates or odds (see Box 8). Relative measures capture the strength of the association between an exposure and disease. If the relative risk is a long way from 1 it is less likely that the association is due to confounding [164,165]. Relative effects or associations tend to be more consistent across studies and populations than absolute measures, but what often tends to be the case may be irrelevant in a particular instance. For example, similar relative risks were obtained for the classic cardiovascular risk factors for men living in Northern Ireland, France, the USA and Germany, despite the fact that the underlying risk of coronary heart disease varies substantially between these countries [166,167]. In contrast, in a study of hypertension as a risk factor for cardiovascular disease mortality, the data were more compatible with a constant rate difference than with a constant rate ratio [168].

Widely used statistical models, including logistic [169] and proportional hazards (Cox) regression [170] are based on ratio measures. In these models, only departures from constancy of ratio effect measures are easily discerned. Nevertheless, measures which assess departures from additivity of risk differences, such as the Relative Excess Risk from Interaction (RERI, see item 12b and Box 8), can be estimated in models based on ratio measures.

In many circumstances, the absolute risk associated with an exposure is of greater interest than the relative risk. For example, if the focus is on adverse effects of a drug, one will want to know the number of additional cases per unit time of use (e.g., days, weeks, or years). The example gives the additional number of breast cancer cases per 1000 women who used hormone-replacement therapy for 10 years [163]. Measures such as the attributable risk or population attributable fraction may be useful to gauge how much disease can be prevented if the exposure is eliminated. They should preferably be presented together with a measure of statistical uncertainty (e.g., confidence intervals as in the example). Authors should be aware of the strong assumptions made in this context, including a causal relationship between a risk factor and disease (also see Box 7) [171]. Because of the semantic ambiguity and complexities involved, authors should report in detail what methods were used to calculate attributable risks, ideally giving the formulae used [172].

A recent survey of abstracts of 222 articles published in leading medical journals found that in 62% of abstracts of randomised trials including a ratio measure absolute risks were given, but only in 21% of abstracts of cohort studies [173]. A free text search of Medline 1966 to 1997 showed that 619 items mentioned attributable risks in the title or abstract, compared to 18,955 using relative risk or odds ratio, for a ratio of 1 to 31 [174].

16d

Report results of any adjustments for multiple comparisons.

Other analyses

17a

Report other analyses done—e.g., analyses of subgroups and interactions, and sensitivity analyses.

In addition to the main analysis other analyses are often done in observational studies. They may address specific subgroups, the potential interaction between risk factors, the calculation of attributable risks, or use alternative definitions of study variables in sensitivity analyses.

There is debate about the dangers associated with subgroup analyses, and multiplicity of analyses in general [4,104]. In our opinion, there is too great a tendency to look for evidence of subgroup-specific associations, or effect-measure modification, when overall results appear to suggest little or no effect. On the other hand, there is value in exploring whether an overall association appears consistent across several, preferably pre-specified subgroups especially when a study is large enough to have sufficient data in each subgroup. A second area of debate is about interesting subgroups that arose during the data analysis. They might be important findings, but might also arise by chance. Some argue that it is neither possible nor necessary to inform the reader about all subgroup analyses done as future analyses of other data will tell to what extent the early exciting findings stand the test of time [9]. We advise authors to report which analyses were planned, and which were not (see also items 4, 12b and 20). This will allow readers to judge the implications of multiplicity, taking into account the study's position on the continuum from discovery to verification or refutation.

A third area of debate is how joint effects and interactions between risk factors should be evaluated: on additive or multiplicative scales, or should the scale be determined by the statistical model that fits best (see also item 12b and Box 8)? A sensible approach is to report the separate effect of each exposure as well as the joint effect—if possible in a table, as in the first example above [183], or in the study by Martinelli et al. [185]. Such a table gives the reader sufficient information to evaluate additive as well as multiplicative interaction (how these calculations are done is shown in Box 8). Confidence intervals for separate and joint effects may help the reader to judge the strength of the data. In addition, confidence intervals around measures of interaction, such as the Relative Excess Risk from Interaction (RERI) relate to tests of interaction or homogeneity tests. One recurrent problem is that authors use comparisons of P-values across subgroups, which lead to erroneous claims about an effect modifier. For instance, a statistically significant association in one category (e.g., men), but not in the other (e.g., women) does not in itself provide evidence of effect modification. Similarly, the confidence intervals for each point estimate are sometimes inappropriately used to infer that there is no interaction when intervals overlap. A more valid inference is achieved by directly evaluating whether the magnitude of an association differs across subgroups.

Sensitivity analyses are helpful to investigate the influence of choices made in the statistical analysis, or to investigate the robustness of the findings to missing data or possible biases (see also item 12b). Judgement is needed regarding the level of reporting of such analyses. If many sensitivity analyses were performed, it may be impractical to present detailed findings for them all. It may sometimes be sufficient to report that sensitivity analyses were carried out and that they were consistent with the main results presented. Detailed presentation is more appropriate if the issue investigated is of major concern, or if effect estimates vary considerably [59,186].

Pocock and colleagues found that 43 out of 73 articles reporting observational studies contained subgroup analyses. The majority claimed differences across groups but only eight articles reported a formal evaluation of interaction (see item 12b) [4].

17b

Report other analyses done—e.g., analyses of subgroups and interactions, and sensitivity analyses.

If numerous genetic exposures (genetic variants) were examined, summarize results from all analyses undertaken.

17c

Report other analyses done—e.g., analyses of subgroups and interactions, and sensitivity analyses.

If detailed results are available elsewhere, state how they can be accessed.

Key results

18.

Summarise key results with reference to study objectives.

Limitations

19.

Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias.

The identification and discussion of the limitations of a study are an essential part of scientific reporting. It is important not only to identify the sources of bias and confounding that could have affected results, but also to discuss the relative importance of different biases, including the likely direction and magnitude of any potential bias (see also item 9 and Box 3).

Authors should also discuss any imprecision of the results. Imprecision may arise in connection with several aspects of a study, including the study size (item 10) and the measurement of exposures, confounders and outcomes (item 8). The inability to precisely measure true values of an exposure tends to result in bias towards unity: the less precisely a risk factor is measured, the greater the bias. This effect has been described as ‘attenuation' [201,202], or more recently as ‘regression dilution bias' [203]. However, when correlated risk factors are measured with different degrees of imprecision, the adjusted relative risk associated with them can be biased towards or away from unity [204–206].

When discussing limitations, authors may compare the study being presented with other studies in the literature in terms of validity, generalisability and precision. In this approach, each study can be viewed as contribution to the literature, not as a stand-alone basis for inference and action [207]. Surprisingly, the discussion of important limitations of a study is sometimes omitted from published reports. A survey of authors who had published original research articles in The Lancet found that important weaknesses of the study were reported by the investigators in the survey questionnaires, but not in the published article.

Interpretation

20.

Give a cautious overall interpretation considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence.

The heart of the discussion section is the interpretation of a study's results. Over-interpretation is common and human: even when we try hard to give an objective assessment, reviewers often rightly point out that we went too far in some respects. When interpreting results, authors should consider the nature of the study on the discovery to verification continuum and potential sources of bias, including loss to follow-up and non-participation (see also items 9, 12 and 19). Due consideration should be given to confounding (item 16a), the results of relevant sensitivity analyses, and to the issue of multiplicity and subgroup analyses (item 17). Authors should also consider residual confounding due to unmeasured variables or imprecise measurement of confounders. For example, socioeconomic status (SES) is associated with many health outcomes and often differs between groups being compared. Variables used to measure SES (income, education, or occupation) are surrogates for other undefined and unmeasured exposures, and the true confounder will by definition be measured with error [208]. Authors should address the real range of uncertainty in estimates, which is larger than the statistical uncertainty reflected in confidence intervals. The latter do not take into account other uncertainties that arise from a study's design, implementation, and methods of measurement [209].

To guide thinking and conclusions about causality, some may find criteria proposed by Bradford Hill in 1965 helpful [164]. How strong is the association with the exposure? Did it precede the onset of disease? Is the association consistently observed in different studies and settings? Is there supporting evidence from experimental studies, including laboratory and animal studies? How specific is the exposure's putative effect, and is there a dose-response relationship? Is the association biologically plausible? These criteria should not, however, be applied mechanically. For example, some have argued that relative risks below 2 or 3 should be ignored [210,211]. This is a reversal of the point by Cornfield et al. about the strength of large relative risks (see item 12b) [127]. Although a causal effect is more likely with a relative risk of 9, it does not follow that one below 3 is necessarily spurious. For instance, the small increase in the risk of childhood leukaemia after intrauterine irradiation is credible because it concerns an adverse effect of a medical procedure for which no alternative explanations are obvious [212]. Moreover, the carcinogenic effects of radiation are well established. The doubling in the risk of ovarian cancer associated with eating 2 to 4 eggs per week is not immediately credible, since dietary habits are associated with a large number of lifestyle factors as well as SES [213]. In contrast, the credibility of much debated epidemiologic findings of a difference in thrombosis risk between different types of oral contraceptives was greatly enhanced by the differences in coagulation found in a randomised cross-over trial [214]. A discussion of the existing external evidence, from different types of studies, should always be included, but may be particularly important for studies reporting small increases in risk. Further, authors should put their results in context with similar studies and explain how the new study affects the existing body of evidence, ideally by referring to a systematic review.

Generalisability

21.

Discuss the generalisability (external validity) of the study results.

Generalisability, also called external validity or applicability, is the extent to which the results of a study can be applied to other circumstances [216]. There is no external validity per se; the term is meaningful only with regard to clearly specified conditions [217]. Can results be applied to an individual, groups or populations that differ from those enrolled in the study with regard to age, sex, ethnicity, severity of disease, and co-morbid conditions? Are the nature and level of exposures comparable, and the definitions of outcomes relevant to another setting or population? Are data that were collected in longitudinal studies many years ago still relevant today? Are results from health services research in one country applicable to health systems in other countries?

The question of whether the results of a study have external validity is often a matter of judgment that depends on the study setting, the characteristics of the participants, the exposures examined, and the outcomes assessed. Thus, it is crucial that authors provide readers with adequate information about the setting and locations, eligibility criteria, the exposures and how they were measured, the definition of outcomes, and the period of recruitment and follow-up. The degree of non-participation and the proportion of unexposed participants in whom the outcome develops are also relevant. Knowledge of the absolute risk and prevalence of the exposure, which will often vary across populations, are helpful when applying results to other settings and populations (see Box 7).

Funding

22.

Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based.

Some journals require authors to disclose the presence or absence of financial and other conflicts of interest [100,218]. Several investigations show strong associations between the source of funding and the conclusions of research articles [219–222]. The conclusions in randomised trials recommended the experimental drug as the drug of choice much more often (odds ratio 5.3) if the trial was funded by for-profit organisations, even after adjustment for the effect size [223]. Other studies document the influence of the tobacco and telecommunication industries on the research they funded [224–227]. There are also examples of undue influence when the sponsor is governmental or a non-profit organisation.

Authors or funders may have conflicts of interest that influence any of the following: the design of the study [228]; choice of exposures [228,229], outcomes [230], statistical methods [231], and selective publication of outcomes [230] and studies [232]. Consequently, the role of the funders should be described in detail: in what part of the study they took direct responsibility (e.g., design, data collection, analysis, drafting of manuscript, decision to publish) [100]. Other sources of undue influence include employers (e.g., university administrators for academic researchers and government supervisors, especially political appointees, for government researchers), advisory committees, litigants, and special interest groups.

To acknowledge this checklist in your methods, please state "We used the STREGA checklist when writing our report [citation]". Then cite this checklist as Little J, Higgins JP, Ioannidis JP, Moher D, Gagnon F, von Elm E, Khoury MJ, Cohen B, Davey-Smith G, Grimshaw J, Scheet P, Gwinn M, Williamson RE, Zou GY, Hutchings K, Johnson CY, Tait V, Wiens M, Golding J, van Duijn C, McLaughlin J, Paterson A, Wells G, Fortier I, Freedman M, Zecevic M, King R, Infante-Rivard C, Stewart A, Birkett N; STrengthening the REporting of Genetic Association Studies. STrengthening the REporting of Genetic Association Studies (STREGA): An Extension of the STROBE Statement..

The STREGA checklist is distributed under the terms of the Creative Commons Attribution License CC-BY