Guidance for reporting a randomised trial
Go to checklistTitle and Abstract
1a Title
Identification as a randomized trial in the title.
The ability to identify a report of a randomised trial in an electronic database depends to a large extent on how it was indexed. Indexers may not classify a report as a randomised trial if the authors do not explicitly report this information.64 To help ensure that a study is appropriately indexed and easily identified, authors should use the word “randomised” in the title to indicate that the participants were randomly assigned to their comparison groups.
Example/s:
Smoking reduction with oral nicotine inhalers: double blind, randomised clinical trial of efficacy and safety.
1b Abstract
Structured summary of trial design, methods, results, and conclusions.
Clear, transparent, and sufficiently detailed abstracts are important because readers often base their assessment of a trial on such information. Some readers use an abstract as a screening tool to decide whether to read the full article. However, as not all trials are freely available and some health professionals do not have access to the full trial reports, healthcare decisions are sometimes made on the basis of abstracts of randomised trials.66
A journal abstract should contain sufficient information about a trial to serve as an accurate record of its conduct and findings, providing optimal information about the trial within the space constraints and format of a journal. A properly constructed and written abstract helps individuals to assess quickly the relevance of the findings and aids the retrieval of relevant reports from electronic databases.67 The abstract should accurately reflect what is included in the full journal article and should not include information that does not appear in the body of the paper. Studies comparing the accuracy of information reported in a journal abstract with that reported in the text of the full publication have found claims that are inconsistent with, or missing from, the body of the full article.68 69 70 71 Conversely, omitting important harms from the abstract could seriously mislead someone’s interpretation of the trial findings.42 72
A recent extension to the CONSORT statement provides a list of essential items that authors should include when reporting the main results of a randomised trial in a journal (or conference) abstract (see table 22).45 We strongly recommend the use of structured abstracts for reporting randomised trials. They provide readers with information about the trial under a series of headings pertaining to the design, conduct, analysis, and interpretation.73 Some studies have found that structured abstracts are of higher quality than the more traditional descriptive abstracts74 75 and that they allow readers to find information more easily.76 We recognise that many journals have developed their own structure and word limit for reporting abstracts. It is not our intention to suggest changes to these formats, but to recommend what information should be reported.
Example/s:
For specific guidance see CONSORT for abstracts.
Introduction
2a Background and objectives
Scientific background and explanation of rationale.
Typically, the introduction consists of free flowing text, in which authors explain the scientific background and rationale for their trial, and its general outline. It may also be appropriate to include here the objectives of the trial (see item 2b).The rationale may be explanatory (for example, to assess the possible influence of a drug on renal function) or pragmatic (for example, to guide practice by comparing the benefits and harms of two treatments). Authors should report any evidence of the benefits and harms of active interventions included in a trial and should suggest a plausible explanation for how the interventions might work, if this is not obvious.78
The Declaration of Helsinki states that biomedical research involving people should be based on a thorough knowledge of the scientific literature.79 That is, it is unethical to expose humans unnecessarily to the risks of research. Some clinical trials have been shown to have been unnecessary because the question they addressed had been or could have been answered by a systematic review of the existing literature.80 81 Thus, the need for a new trial should be justified in the introduction. Ideally, it should include a reference to a systematic review of previous similar trials or a note of the absence of such trials.
Example/s:
Surgery is the treatment of choice for patients with disease stage I and II non-small cell lung cancer (NSCLC) … An NSCLC meta-analysis combined the results from eight randomised trials of surgery versus surgery plus adjuvant cisplatin-based chemotherapy and showed a small, but not significant (p=0.08), absolute survival benefit of around 5% at 5 years (from 50% to 55%). At the time the current trial was designed (mid-1990s), adjuvant chemotherapy had not become standard clinical practice … The clinical rationale for neo-adjuvant chemotherapy is three-fold: regression of the primary cancer could be achieved thereby facilitating and simplifying or reducing subsequent surgery; undetected micro-metastases could be dealt with at the start of treatment; and there might be inhibition of the putative stimulus to residual cancer by growth factors released by surgery and by subsequent wound healing … The current trial was therefore set up to compare, in patients with resectable NSCLC, surgery alone versus three cycles of platinum-based chemotherapy followed by surgery in terms of overall survival, quality of life, pathological staging, resectability rates, extent of surgery, and time to and site of relapse.
2b Background and objectives
Specific objectives or hypothesis.
Objectives are the questions that the trial was designed to answer. They often relate to the efficacy of a particular therapeutic or preventive intervention. Hypotheses are pre-specified questions being tested to help meet the objectives. Hypotheses are more specific than objectives and are amenable to explicit statistical evaluation. In practice, objectives and hypotheses are not always easily differentiated. Most reports of RCTs provide adequate information about trial objectives and hypotheses.
Example/s:
In the current study we tested the hypothesis that a policy of active management of nulliparous labour would: 1. reduce the rate of caesarean section, 2. reduce the rate of prolonged labour; 3. not influence maternal satisfaction with the birth experience.
Methods
3a Trial design
Description of trial design (such as parallel, factorial) including allocation ratio.
The word “design” is often used to refer to all aspects of how a trial is set up, but it also has a narrower interpretation. Many specific aspects of the broader trial design, including details of randomisation and blinding, are addressed elsewhere in the CONSORT checklist. Here we seek information on the type of trial, such as parallel group or factorial, and the conceptual framework, such as superiority or non-inferiority, and other related issues not addressed elsewhere in the checklist.
The CONSORT statement focuses mainly on trials with participants individually randomised to one of two “parallel” groups. In fact, little more than half of published trials have such a design.16 The main alternative designs are multi-arm parallel, crossover, cluster,40 and factorial designs. Also, most trials are set to identify the superiority of a new intervention, if it exists, but others are designed to assess non-inferiority or equivalence.39 It is important that researchers clearly describe these aspects of their trial, including the unit of randomisation (such as patient, GP practice, lesion). It is desirable also to include these details in the abstract (see item 1b).
If a less common design is employed, authors are encouraged to explain their choice, especially as such designs may imply the need for a larger sample size or more complex analysis and interpretation.
Although most trials use equal randomisation (such as 1:1 for two groups), it is helpful to provide the allocation ratio explicitly. For drug trials, specifying the phase of the trial (I-IV) may also be relevant.
Example/s:
This was a multicenter, stratified (6 to 11 years and 12 to 17 years of age, with imbalanced randomisation [2:1]), double-blind, placebo-controlled, parallel-group study conducted in the United States (41 sites.
3b Trial design
Important changes to methods after trial commencement (such as eligibility criteria), with reasons.
A few trials may start without any fixed plan (that is, are entirely exploratory), but the most will have a protocol that specifies in great detail how the trial will be conducted. There may be deviations from the original protocol, as it is impossible to predict every possible change in circumstances during the course of a trial. Some trials will therefore have important changes to the methods after trial commencement.
Changes could be due to external information becoming available from other studies, or internal financial difficulties, or could be due to a disappointing recruitment rate. Such protocol changes should be made without breaking the blinding on the accumulating data on participants’ outcomes. In some trials, an independent data monitoring committee will have as part of its remit the possibility of recommending protocol changes based on seeing unblinded data. Such changes might affect the study methods (such as changes to treatment regimens, eligibility criteria, randomisation ratio, or duration of follow-up) or trial conduct (such as dropping a centre with poor data quality).87
Some trials are set up with a formal “adaptive” design. There is no universally accepted definition of these designs, but a working definition might be “a multistage study design that uses accumulating data to decide how to modify aspects of the study without undermining the validity and integrity of the trial.”88 The modifications are usually to the sample sizes and the number of treatment arms and can lead to decisions being made more quickly and with more efficient use of resources. There are, however, important ethical, statistical, and practical issues in considering such a design.89 90
Whether the modifications are explicitly part of the trial design or in response to changing circumstances, it is essential that they are fully reported to help the reader interpret the results. Changes from protocols are not currently well reported. A review of comparisons with protocols showed that about half of journal articles describing RCTs had an unexplained discrepancy in the primary outcomes.57 Frequent unexplained discrepancies have also been observed for details of randomisation, blinding,91 and statistical analyses.
Example/s:
Patients were randomly assigned to one of six parallel groups, initially in 1:1:1:1:1:1 ratio, to receive either one of five otamixaban … regimens … or an active control of unfractionated heparin … an independent Data Monitoring Committee reviewed unblinded data for patient safety; no interim analyses for efficacy or futility were done. During the trial, this committee recommended that the group receiving the lowest dose of otamixaban (0·035 mg/kg/h) be discontinued because of clinical evidence of inadequate anticoagulation. The protocol was immediately amended in accordance with that recommendation, and participants were subsequently randomly assigned in 2:2:2:2:1 ratio to the remaining otamixaban and control groups, respectively.
4a Participants
Eligibility criteria for participants.
A comprehensive description of the eligibility criteria used to select the trial participants is needed to help readers interpret the study. In particular, a clear understanding of these criteria is one of several elements required to judge to whom the results of a trial apply—that is, the trial’s generalisability (applicability) and relevance to clinical or public health practice (see item 21).94 A description of the method of recruitment, such as by referral or self selection (for example, through advertisements), is also important in this context. Because they are applied before randomisation, eligibility criteria do not affect the internal validity of a trial, but they are central to its external validity.
Typical and widely accepted selection criteria relate to the nature and stage of the disease being studied, the exclusion of persons thought to be particularly vulnerable to harm from the study intervention, and to issues required to ensure that the study satisfies legal and ethical norms. Informed consent by study participants, for example, is typically required in intervention studies. The common distinction between inclusion and exclusion criteria is unnecessary; the same criterion can be phrased to include or exclude participants.95
Despite their importance, eligibility criteria are often not reported adequately. For example, eight published trials leading to clinical alerts by the National Institutes of Health specified an average of 31 eligibility criteria in their protocols, but only 63% of the criteria were mentioned in the journal articles, and only 19% were mentioned in the clinical alerts.96 Similar deficiencies were found for HIV clinical trials.97 Among 364 reports of RCTs in surgery, 25% did not specify any eligibility criteria.
Example/s:
Eligible participants were all adults aged 18 or over with HIV who met the eligibility criteria for antiretroviral therapy according to the Malawian national HIV treatment guidelines (WHO clinical stage III or IV or any WHO stage with a CD4 count <250/mm3) and who were starting treatment with a BMI <18.5. Exclusion criteria were pregnancy and lactation or participation in another supplementary feeding programme.
4b Participants
Settings and locations where the data were collected.
Along with the eligibility criteria for participants (see item 4a) and the description of the interventions (see item 5), information on the settings and locations is crucial to judge the applicability and generalisability of a trial. Were participants recruited from primary, secondary, or tertiary health care or from the community? Healthcare institutions vary greatly in their organisation, experience, and resources and the baseline risk for the condition under investigation. Other aspects of the setting (including the social, economic, and cultural environment and the climate) may also affect a study’s external validity.
Authors should report the number and type of settings and describe the care providers involved. They should report the locations in which the study was carried out, including the country, city if applicable, and immediate environment (for example, community, office practice, hospital clinic, or inpatient unit). In particular, it should be clear whether the trial was carried out in one or several centres (“multicentre trials”). This description should provide enough information so that readers can judge whether the results of the trial could be relevant to their own setting. The environment in which the trial is conducted may differ considerably from the setting in which the trial’s results are later used to guide practice and policy.94 99 Authors should also report any other information about the settings and locations that could have influenced the observed results, such as problems with transportation that might have affected patient participation or delays in administering interventions.
Example/s:
The study took place at the antiretroviral therapy clinic of Queen Elizabeth Central Hospital in Blantyre, Malawi, from January 2006 to April 2007. Blantyre is the major commercial city of Malawi, with a population of 1 000 000 and an estimated HIV prevalence of 27% in adults in 2004.
5. Interventions
The experimental and control interventions for each group with sufficient details to allow replication, including how and when they were actually administered.
Authors should describe each intervention thoroughly, including control interventions. The description should allow a clinician wanting to use the intervention to know exactly how to administer the intervention that was evaluated in the trial.102 For a drug intervention, information would include the drug name, dose, method of administration (such as oral, intravenous), timing and duration of administration, conditions under which interventions are withheld, and titration regimen if applicable. If the control group is to receive “usual care” it is important to describe thoroughly what that constitutes. If the control group or intervention group is to receive a combination of interventions the authors should provide a thorough description of each intervention, an explanation of the order in which the combination of interventions are introduced or withdrawn, and the triggers for their introduction if applicable.
Specific extensions of the CONSORT statement address the reporting of non-pharmacologic and herbal interventions and their particular reporting requirements (such as expertise, details of how the interventions were standardised).43 44 We recommend readers consult the statements for non-pharmacologic and herbal interventions as appropriate.
Example/s:
In POISE, patients received the first dose of the study drug (ie, oral extended-release metoprolol 100 mg or matching placebo) 2-4 h before surgery. Study drug administration required a heart rate of 50 bpm or more and a systolic blood pressure of 100 mm Hg or greater; these haemodynamics were checked before each administration. If, at any time during the first 6 h after surgery, heart rate was 80 bpm or more and systolic blood pressure was 100 mm Hg or higher, patients received their first postoperative dose (extended-release metoprolol 100 mg or matched placebo) orally. If the study drug was not given during the first 6 h, patients received their first postoperative dose at 6 h after surgery. 12 h after the first postoperative dose, patients started taking oral extended-release metoprolol 200 mg or placebo every day for 30 days. If a patient’s heart rate was consistently below 45 bpm or their systolic blood pressure dropped below 100 mm Hg, study drug was withheld until their heart rate or systolic blood pressure recovered; the study drug was then restarted at 100 mg once daily. Patients whose heart rate was consistently 45-49 bpm and systolic blood pressure exceeded 100 mm Hg delayed taking the study drug for 12 h.
6a Outcomes
Completely defined prespecified primary and secondary outcome measures, including how and when they were assessed.
All RCTs assess response variables, or outcomes (end points), for which the groups are compared. Most trials have several outcomes, some of which are of more interest than others. The primary outcome measure is the pre-specified outcome considered to be of greatest importance to relevant stakeholders (such a patients, policy makers, clinicians, funders) and is usually the one used in the sample size calculation (see item 7). Some trials may have more than one primary outcome. Having several primary outcomes, however, incurs the problems of interpretation associated with multiplicity of analyses (see items 18 and 20) and is not recommended. Primary outcomes should be explicitly indicated as such in the report of an RCT. Other outcomes of interest are secondary outcomes (additional outcomes). There may be several secondary outcomes, which often include unanticipated or unintended effects of the intervention (see item 19), although harms should always be viewed as important whether they are labelled primary or secondary.
All outcome measures, whether primary or secondary, should be identified and completely defined. The principle here is that the information provided should be sufficient to allow others to use the same outcomes.102 When outcomes are assessed at several time points after randomisation, authors should also indicate the pre-specified time point of primary interest. For many non-pharmacological interventions it is helpful to specify who assessed outcomes (for example, if special skills are required to do so) and how many assessors there were.43
Where available and appropriate, the use of previously developed and validated scales or consensus guidelines should be reported,104 105 both to enhance quality of measurement and to assist in comparison with similar studies.106 For example, assessment of quality of life is likely to be improved by using a validated instrument.107 Authors should indicate the provenance and properties of scales.
More than 70 outcomes were used in 196 RCTs of non-steroidal anti-inflammatory drugs for rheumatoid arthritis,108 and 640 different instruments had been used in 2000 trials in schizophrenia, of which 369 had been used only once.33 Investigation of 149 of those 2000 trials showed that unpublished scales were a source of bias. In non-pharmacological trials, a third of the claims of treatment superiority based on unpublished scales would not have been made if a published scale had been used.109 Similar data have been reported elsewhere.110 111 Only 45% of a cohort of 519 RCTs published in 2000 specified the primary outcome16; this compares with 53% for a similar cohort of 614 RCTs published in 2006.
Example/s:
The primary endpoint with respect to efficacy in psoriasis was the proportion of patients achieving a 75% improvement in psoriasis activity from baseline to 12 weeks as measured by the PASI [psoriasis area and severity index] Additional analyses were done on the percentage change in PASI scores and improvement in target psoriasis lesions.
6b Outcomes
Any changes to trial outcomes after the trial commenced, with reasons.
There are many reasons for departures from the initial study protocol. Authors should report all major changes to the protocol, including unplanned changes to eligibility criteria, interventions, examinations, data collection, methods of analysis, and outcomes. Such information is not always reported.
As indicated earlier (see item 6a), most trials record multiple outcomes, with the risk that results will be reported for only a selected subset (see item 17). Pre-specification and reporting of primary and secondary outcomes (see item 6a) should remove such a risk. In some trials, however, circumstances require a change in the way an outcome is assessed or even, as in the example above, a switch to a different outcome. For example, there may be external evidence from other trials or systematic reviews suggesting the end point might not be appropriate, or recruitment or the overall event rate in the trial may be lower than expected. Changing an end point based on unblinded data is much more problematic, although it may be specified in the context of an adaptive trial design. Authors should identify and explain any such changes. Likewise, any changes after the trial began of the designation of outcomes as primary or secondary should be reported and explained.
A comparison of protocols and publications of 102 randomised trials found that 62% of trials reports had at least one primary outcome that was changed, introduced, or omitted compared with the protocol. Primary outcomes also differed between protocols and publications for 40% of a cohort of 48 trials funded by the Canadian Institutes of Health Research. Not one of the subsequent 150 trial reports mentioned, let alone explained, changes from the protocol. Similar results from other studies have been reported recently in a systematic review of empirical studies examining outcome reporting bias.
Example/s:
The original primary endpoint was all-cause mortality, but, during a masked analysis, the data and safety monitoring board noted that overall mortality was lower than had been predicted and that the study could not be completed with the sample size and power originally planned. The steering committee therefore decided to adopt co-primary endpoints of all-cause mortality (the original primary endpoint), together with all-cause mortality or cardiovascular hospital admissions (the first prespecified secondary endpoint).
7a Sample size
How sample size was determined.
For scientific and ethical reasons, the sample size for a trial needs to be planned carefully, with a balance between medical and statistical considerations. Ideally, a study should be large enough to have a high probability (power) of detecting as statistically significant a clinically important difference of a given size if such a difference exists. The size of effect deemed important is inversely related to the sample size necessary to detect it; that is, large samples are necessary to detect small differences. Elements of the sample size calculation are (1) the estimated outcomes in each group (which implies the clinically important target difference between the intervention groups); (2) the α (type I) error level; (3) the statistical power (or the β (type II) error level); and (4), for continuous outcomes, the standard deviation of the measurements.116 The interplay of these elements and their reporting will differ for cluster trials40 and non-inferiority and equivalence trials.39
Authors should indicate how the sample size was determined. If a formal power calculation was used, the authors should identify the primary outcome on which the calculation was based (see item 6a), all the quantities used in the calculation, and the resulting target sample size per study group. It is preferable to quote the expected result in the control group and the difference between the groups one would not like to overlook. Alternatively, authors could present the percentage with the event or mean for each group used in their calculations. Details should be given of any allowance made for attrition or non-compliance during the study.
Some methodologists have written that so called underpowered trials may be acceptable because they could ultimately be combined in a systematic review and meta-analysis,117 118 119 and because some information is better than no information. Of note, important caveats apply—such as the trial should be unbiased, reported properly, and published irrespective of the results, thereby becoming available for meta-analysis.118 On the other hand, many medical researchers worry that underpowered trials with indeterminate results will remain unpublished and insist that all trials should individually have “sufficient power.” This debate will continue, and members of the CONSORT Group have varying views. Critically however, the debate and those views are immaterial to reporting a trial. Whatever the power of a trial, authors need to properly report their intended size with all their methods and assumptions.118 That transparently reveals the power of the trial to readers and gives them a measure by which to assess whether the trial attained its planned size.
In some trials, interim analyses are used to help decide whether to stop early or to continue recruiting sometimes beyond the planned trial end (see item 7b). If the actual sample size differed from the originally intended sample size for some other reason (for example, because of poor recruitment or revision of the target sample size), the explanation should be given.
Reports of studies with small samples frequently include the erroneous conclusion that the intervention groups do not differ, when in fact too few patients were studied to make such a claim.120 Reviews of published trials have consistently found that a high proportion of trials have low power to detect clinically meaningful treatment effects.121 122 123 In reality, small but clinically meaningful true differences are much more likely than large differences to exist, but large trials are required to detect them.124
In general, the reported sample sizes in trials seem small. The median sample size was 54 patients in 196 trials in arthritis,108 46 patients in 73 trials in dermatology,8 and 65 patients in 2000 trials in schizophrenia.33 These small sample sizes are consistent with those of a study of 519 trials indexed in PubMed in December 200016 and a similar cohort of trials (n=616) indexed in PubMed in 2006,17 where the median number of patients recruited for parallel group trials was 80 across both years. Moreover, many reviews have found that few authors report how they determined the sample size.8 14 32 33 123
There is little merit in a post hoc calculation of statistical power using the results of a trial; the power is then appropriately indicated by confidence intervals (see item 17).
Example/s:
To detect a reduction in PHS (postoperative hospital stay) of 3 days (SD 5 days), which is in agreement with the study of Lobo et al17 with a two-sided 5% significance level and a power of 80%, a sample size of 50 patients per group was necessary, given an anticipated dropout rate of 10%. To recruit this number of patients a 12-month inclusion period was anticipated.
7b Sample size
When applicable, explanation of any interim analyses and stopping guidelines.
Many trials recruit participants over a long period. If an intervention is working particularly well or badly, the study may need to be ended early for ethical reasons. This concern can be addressed by examining results as the data accumulate, preferably by an independent data monitoring committee. However, performing multiple statistical examinations of accumulating data without appropriate correction can lead to erroneous results and interpretations.128 If the accumulating data from a trial are examined at five interim analyses that use a P value of 0.05, the overall false positive rate is nearer to 19% than to the nominal 5%.
Several group sequential statistical methods are available to adjust for multiple analyses,129 130 131 and their use should be pre-specified in the trial protocol. With these methods, data are compared at each interim analysis, and a P value less than the critical value specified by the group sequential method indicates statistical significance. Some trialists use group sequential methods as an aid to decision making,132 whereas others treat them as a formal stopping rule (with the intention that the trial will cease if the observed P value is smaller than the critical value).
Authors should report whether they or a data monitoring committee took multiple “looks” at the data and, if so, how many there were, what triggered them, the statistical methods used (including any formal stopping rule), and whether they were planned before the start of the trial, before the data monitoring committee saw any interim data by allocation, or some time thereafter. This information is often not included in published trial reports,133 even in trials that report stopping earlier than planned.
Example/s:
Two interim analyses were performed during the trial. The levels of significance maintained an overall P value of 0.05 and were calculated according to the O’Brien-Fleming stopping boundaries. This final analysis used a Z score of 1.985 with an associated P value of 0.0471.
8a Randomization - Sequence generation
Method used to generate the random allocation sequence.
Participants should be assigned to comparison groups in the trial on the basis of a chance (random) process characterised by unpredictability (see box 1). Authors should provide sufficient information that the reader can assess the methods used to generate the random allocation sequence and the likelihood of bias in group assignment. It is important that information on the process of randomisation is included in the body of the main article and not as a separate supplementary file; where it can be missed by the reader.
The term “random” has a precise technical meaning. With random allocation, each participant has a known probability of receiving each intervention before one is assigned, but the assigned intervention is determined by a chance process and cannot be predicted. However, “random” is often used inappropriately in the literature to describe trials in which non-random, deterministic allocation methods were used, such as alternation, hospital numbers, or date of birth. When investigators use such non-random methods, they should describe them precisely and should not use the term “random” or any variation of it. Even the term “quasi-random” is unacceptable for describing such trials. Trials based on non-random methods generally yield biased results.2 3 4 136 Bias presumably arises from the inability to conceal these allocation systems adequately (see item 9).
Many methods of sequence generation are adequate. However, readers cannot judge adequacy from such terms as “random allocation,” “randomisation,” or “random” without further elaboration. Authors should specify the method of sequence generation, such as a random-number table or a computerised random number generator. The sequence may be generated by the process of minimisation, a non-random but generally acceptable method (see box 2). In some trials, participants are intentionally allocated in unequal numbers to each intervention: for example, to gain more experience with a new procedure or to limit costs of the trial. In such cases, authors should report the randomisation ratio (for example, 2:1 or two treatment participants per each control participant) (see item 3a).
In a representative sample of PubMed indexed trials in 2000, only 21% reported an adequate approach to random sequence generation16; this increased to 34% for a similar cohort of PubMed indexed trials in 2006.17 In more than 90% of these cases, researchers used a random number generator on a computer or a random number table.
Example/s:
Independent pharmacists dispensed either active or placebo inhalers according to a computer generated randomisation list.
8b Randomization - Sequence generation
Type of randomization; details of any restriction (such as blocking and block size).
In trials of several hundred participants or more simple randomisation can usually be trusted to generate similar numbers in the two trial groups139 and to generate groups that are roughly comparable in terms of known and unknown prognostic variables.140 For smaller trials (see item 7a)—and even for trials that are not intended to be small, as they may stop before reaching their target size—some restricted randomisation (procedures to help achieve balance between groups in size or characteristics) may be useful (see box 2).
It is important to indicate whether no restriction was used, by stating such or by stating that “simple randomisation” was done. Otherwise, the methods used to restrict the randomisation, along with the method used for random selection, should be specified. For block randomisation, authors should provide details on how the blocks were generated (for example, by using a permuted block design with a computer random number generator), the block size or sizes, and whether the block size was fixed or randomly varied. If the trialists became aware of the block size(s), that information should also be reported as such knowledge could lead to code breaking. Authors should specify whether stratification was used, and if so, which factors were involved (such as recruitment site, sex, disease stage), the categorisation cut-off values within strata, and the method used for restriction. Although stratification is a useful technique, especially for smaller trials, it is complicated to implement and may be impossible if many stratifying factors are used. If minimisation (see box 2) was used, it should be explicitly identified, as should the variables incorporated into the scheme. If used, a random element should be indicated.
Only 9% of 206 reports of trials in specialty journals23 and 39% of 80 trials in general medical journals reported use of stratification.32 In each case, only about half of the reports mentioned the use of restricted randomisation. However, these studies and that of Adetugbo and Williams8 found that the sizes of the treatment groups in many trials were the same or quite similar, yet blocking or stratification had not been mentioned. One possible explanation for the close balance in numbers is underreporting of the use of restricted randomisation.
Example/s:
Randomization sequence was created using Stata 9.0 (StataCorp, College Station, TX) statistical software and was stratified by center with a 1:1 allocation using random block sizes of 2, 4, and 6.
9. Randomization - Allocation concealment mechanism
Mechanism used to implement the random allocation sequence (such as sequentially numbered containers), describing any steps taken to conceal the sequence until interventions were assigned.
Item 8a discussed generation of an unpredictable sequence of assignments. Of considerable importance is how this sequence is applied when participants are enrolled into the trial (see box 1). A generated allocation schedule should be implemented by using allocation concealment,23 a critical mechanism that prevents foreknowledge of treatment assignment and thus shields those who enroll participants from being influenced by this knowledge. The decision to accept or reject a participant should be made, and informed consent should be obtained from the participant, in ignorance of the next assignment in the sequence.148
The allocation concealment should not be confused with blinding (see item 11). Allocation concealment seeks to prevent selection bias, protects the assignment sequence until allocation, and can always be successfully implemented.2 In contrast, blinding seeks to prevent performance and ascertainment bias, protects the sequence after allocation, and cannot always be implemented.23 Without adequate allocation concealment, however, even random, unpredictable assignment sequences can be subverted.2 149
Centralised or “third-party” assignment is especially desirable. Many good allocation concealment mechanisms incorporate external involvement. Use of a pharmacy or central telephone randomisation system are two common techniques. Automated assignment systems are likely to become more common.150 When external involvement is not feasible, an excellent method of allocation concealment is the use of numbered containers. The interventions (often drugs) are sealed in sequentially numbered identical containers according to the allocation sequence.151 Enclosing assignments in sequentially numbered, opaque, sealed envelopes can be a good allocation concealment mechanism if it is developed and monitored diligently. This method can be corrupted, however, particularly if it is poorly executed. Investigators should ensure that the envelopes are opaque when held to the light, and opened sequentially and only after the participant’s name and other details are written on the appropriate envelope.143
A number of methodological studies provide empirical evidence to support these precautions.152 153 Trials in which the allocation sequence had been inadequately or unclearly concealed yielded larger estimates of treatment effects than did trials in which authors reported adequate allocation concealment. These findings provide strong empirical evidence that inadequate allocation concealment contributes to bias in estimating treatment effects.
Despite the importance of the mechanism of allocation concealment, published reports often omit such details. The mechanism used to allocate interventions was omitted in reports of 89% of trials in rheumatoid arthritis,108 48% of trials in obstetrics and gynaecology journals,23 and 44% of trials in general medical journals.32 In a more broadly representative sample of all randomised trials indexed on PubMed, only 18% reported any allocation concealment mechanism, but some of those reported mechanisms were inadequate.
Example/s:
The doxycycline and placebo were in capsule form and identical in appearance. They were prepacked in bottles and consecutively numbered for each woman according to the randomisation schedule. Each woman was assigned an order number and received the capsules in the corresponding prepacked bottle.
10. Randomization - Implementation
Who generated the allocation sequence, who enrolled participants, and who assigned participants to interventions.
As noted in item 9, concealment of the allocated intervention at the time of enrolment is especially important. Thus, in addition to knowing the methods used, it is also important to understand how the random sequence was implemented—specifically, who generated the allocation sequence, who enrolled participants, and who assigned participants to trial groups.
The process of randomising participants into a trial has three different steps: sequence generation, allocation concealment, and implementation (see box 3). Although the same people may carry out more than one process under each heading, investigators should strive for complete separation of the people involved with generation and allocation concealment from the people involved in the implementation of assignments. Thus, if someone is involved in the sequence generation or allocation concealment steps, ideally they should not be involved in the implementation step.
Even with flawless sequence generation and allocation concealment, failure to separate creation and concealment of the allocation sequence from assignment to study group may introduce bias. For example, the person who generated an allocation sequence could retain a copy and consult it when interviewing potential participants for a trial. Thus, that person could bias the enrolment or assignment process, regardless of the unpredictability of the assignment sequence. Investigators must then ensure that the assignment schedule is unpredictable and locked away (such as in a safe deposit box in a building rather inaccessible to the enrolment location) from even the person who generated it. The report of the trial should specify where the investigators stored the allocation list.
Example/s:
Determination of whether a patient would be treated by streptomycin and bed-rest (S case) or by bed-rest alone (C case) was made by reference to a statistical series based on random sampling numbers drawn up for each sex at each centre by Professor Bradford Hill; the details of the series were unknown to any of the investigators or to the co-ordinator … After acceptance of a patient by the panel, and before admission to the streptomycin centre, the appropriate numbered envelope was opened at the central office; the card inside told if the patient was to be an S or a C case, and this information was then given to the medical officer of the centre.
11a Blinding
If done, who was blinded after assignment to interventions (for example, participants, care providers, those assessing outcomes) and how.
The term “blinding” or “masking” refers to withholding information about the assigned interventions from people involved in the trial who may potentially be influenced by this knowledge. Blinding is an important safeguard against bias, particularly when assessing subjective outcomes.153
Benjamin Franklin has been credited as being the first to use blinding in a scientific experiment.158 He blindfolded participants so they would not know when he was applying mesmerism (a popular “healing fluid” of the 18th century) and in so doing showed that mesmerism was a sham. Based on this experiment, the scientific community recognised the power of blinding to reduce bias, and it has remained a commonly used strategy in scientific experiments.
Box 4, on blinding terminology, defines the groups of individuals (that is, participants, healthcare providers, data collectors, outcome adjudicators, and data analysts) who can potentially introduce bias into a trial through knowledge of the treatment assignments. Participants may respond differently if they are aware of their treatment assignment (such as responding more favourably when they receive the new treatment).153 Lack of blinding may also influence compliance with the intervention, use of co-interventions, and risk of dropping out of the trial.
Unblinded healthcare providers may introduce similar biases, and unblinded data collectors may differentially assess outcomes (such as frequency or timing), repeat measurements of abnormal findings, or provide encouragement during performance testing. Unblinded outcome adjudicators may differentially assess subjective outcomes, and unblinded data analysts may introduce bias through the choice of analytical strategies, such as the selection of favourable time points or outcomes, and by decisions to remove patients from the analyses. These biases have been well documented.71 153 159 160 161 162
Blinding, unlike allocation concealment (see item 10), may not always be appropriate or possible. An example is a trial comparing levels of pain associated with sampling blood from the ear or thumb.163 Blinding is particularly important when outcome measures involve some subjectivity, such as assessment of pain. Blinding of data collectors and outcome adjudicators is unlikely to matter for objective outcomes, such as death from any cause. Even then, however, lack of participant or healthcare provider blinding can lead to other problems, such as differential attrition.164 In certain trials, especially surgical trials, blinding of participants and surgeons is often difficult or impossible, but blinding of data collectors and outcome adjudicators is often achievable. For example, lesions can be photographed before and after treatment and assessed by an external observer.165 Regardless of whether blinding is possible, authors can and should always state who was blinded (that is, participants, healthcare providers, data collectors, and outcome adjudicators).
Unfortunately, authors often do not report whether blinding was used.166 For example, reports of 51% of 506 trials in cystic fibrosis,167 33% of 196 trials in rheumatoid arthritis,108 and 38% of 68 trials in dermatology8 did not state whether blinding was used. Until authors of trials improve their reporting of blinding, readers will have difficulty in judging the validity of the trials that they may wish to use to guide their clinical practice.
The term masking is sometimes used in preference to blinding to avoid confusion with the medical condition of being without sight. However, “blinding” in its methodological sense seems to be understood worldwide and is acceptable for reporting clinical trials.
Example/s:
Whereas patients and physicians allocated to the intervention group were aware of the allocated arm, outcome assessors and data analysts were kept blinded to the allocation.
11b Blinding
If relevant, description of the similarity of interventions.
Just as we seek evidence of concealment to assure us that assignment was truly random, we seek evidence of the method of blinding. In trials with blinding of participants or healthcare providers, authors should state the similarity of the characteristics of the interventions (such as appearance, taste, smell, and method of administration).35 173
Some people have advocated testing for blinding by asking participants or healthcare providers at the end of a trial whether they think the participant received the experimental or control intervention.174 Because participants and healthcare providers will usually know whether the participant has experienced the primary outcome, this makes it difficult to determine if their responses reflect failure of blinding or accurate assumptions about the efficacy of the intervention.175 Given the uncertainty this type of information provides, we have removed advocating reporting this type of testing for blinding from the CONSORT 2010 Statement. We do, however, advocate that the authors report any known compromises in blinding. For example, authors should report if it was necessary to unblind any participants at any point during the conduct of a trial.
Example/s:
Jamieson Laboratories Inc provided 500-mg immediate release niacin in a white, oblong, bisect caplet. We independently confirmed caplet content using high performance liquid chromatography … The placebo was matched to the study drug for taste, color, and size, and contained microcrystalline cellulose, silicon dioxide, dicalcium phosphate, magnesium stearate, and stearic acid.
12a Statistical methods
Statistical methods used to compare groups for primary and secondary outcomes.
Data can be analysed in many ways, some of which may not be strictly appropriate in a particular situation. It is essential to specify which statistical procedure was used for each analysis, and further clarification may be necessary in the results section of the report. The principle to follow is to, “Describe statistical methods with enough detail to enable a knowledgeable reader with access to the original data to verify the reported results” (www.icmje.org). It is also important to describe details of the statistical analysis such as intention-to-treat analysis (see box 6).
Almost all methods of analysis yield an estimate of the treatment effect, which is a contrast between the outcomes in the comparison groups. Authors should accompany this by a confidence interval for the estimated effect, which indicates a central range of uncertainty for the true treatment effect. The confidence interval may be interpreted as the range of values for the treatment effect that is compatible with the observed data. It is customary to present a 95% confidence interval, which gives the range expected to include the true value in 95 of 100 similar studies.
Study findings can also be assessed in terms of their statistical significance. The P value represents the probability that the observed data (or a more extreme result) could have arisen by chance when the interventions did not truly differ. Actual P values (for example, P=0.003) are strongly preferable to imprecise threshold reports such as P<0.05.48 177
Standard methods of analysis assume that the data are “independent.” For controlled trials, this usually means that there is one observation per participant. Treating multiple observations from one participant as independent data is a serious error; such data are produced when outcomes can be measured on different parts of the body, as in dentistry or rheumatology. Data analysis should be based on counting each participant once178 179 or should be done by using more complex statistical procedures.180 Incorrect analysis of multiple observations per individual was seen in 123 (63%) of 196 trials in rheumatoid arthritis.
Example/s:
The primary endpoint was change in bodyweight during the 20 weeks of the study in the intention-to-treat population … Secondary efficacy endpoints included change in waist circumference, systolic and diastolic blood pressure, prevalence of metabolic syndrome … We used an analysis of covariance (ANCOVA) for the primary endpoint and for secondary endpoints waist circumference, blood pressure, and patient-reported outcome scores; this was supplemented by a repeated measures analysis. The ANCOVA model included treatment, country, and sex as fixed effects, and bodyweight at randomisation as covariate. We aimed to assess whether data provided evidence of superiority of each liraglutide dose to placebo (primary objective) and to orlistat (secondary objective).
12b Statistical methods
Methods for additional analyses, such as subgroup analyses and adjusted analyses.
As is the case for primary analyses, the method of subgroup analysis should be clearly specified. The strongest analyses are those that look for evidence of a difference in treatment effect in complementary subgroups (for example, older and younger participants), a comparison known as a test of interaction.182 183 A common but misleading approach is to compare P values for separate analyses of the treatment effect in each group. It is incorrect to infer a subgroup effect (interaction) from one significant and one non-significant P value.184 Such inferences have a high false positive rate.
Because of the high risk for spurious findings, subgroup analyses are often discouraged.14 185 Post hoc subgroup comparisons (analyses done after looking at the data) are especially likely not to be confirmed by further studies. Such analyses do not have great credibility.
In some studies, imbalances in participant characteristics are adjusted for by using some form of multiple regression analysis. Although the need for adjustment is much less in RCTs than in epidemiological studies, an adjusted analysis may be sensible, especially if one or more variables is thought to be prognostic.186 Ideally, adjusted analyses should be specified in the study protocol (see item 24). For example, adjustment is often recommended for any stratification variables (see item 8b) on the principle that the analysis strategy should follow the design. In RCTs, the decision to adjust should not be determined by whether baseline differences are statistically significant (see item 16).183 187 The rationale for any adjusted analyses and the statistical methods used should be specified.
Authors should clarify the choice of variables that were adjusted for, indicate how continuous variables were handled, and specify whether the analysis was planned or suggested by the data.188 Reviews of published studies show that reporting of adjusted analyses is inadequate with regard to all of these aspects.188 189 190 191.
Example/s:
Proportions of patients responding were compared between treatment groups with the Mantel-Haenszel χ2 test, adjusted for the stratification variable, methotrexate use.
Results
13a Participant flow diagram (strongly recommended)
For each group, the numbers of participants who were randomly assigned, received intended treatment, and were analysed for the primary outcome.
The design and conduct of some RCTs is straightforward, and the flow of participants, particularly were there are no losses to follow-up or exclusions, through each phase of the study can be described adequately in a few sentences. In more complex studies, it may be difficult for readers to discern whether and why some participants did not receive the treatment as allocated, were lost to follow-up, or were excluded from the analysis.51 This information is crucial for several reasons. Participants who were excluded after allocation are unlikely to be representative of all participants in the study. For example, patients may not be available for follow-up evaluation because they experienced an acute exacerbation of their illness or harms of treatment.22 192
Attrition as a result of loss to follow up, which is often unavoidable, needs to be distinguished from investigator-determined exclusion for such reasons as ineligibility, withdrawal from treatment, and poor adherence to the trial protocol. Erroneous conclusions can be reached if participants are excluded from analysis, and imbalances in such omissions between groups may be especially indicative of bias.192 193 194 Information about whether the investigators included in the analysis all participants who underwent randomisation, in the groups to which they were originally allocated (intention-to-treat analysis (see item 16 and box 6)), is therefore of particular importance. Knowing the number of participants who did not receive the intervention as allocated or did not complete treatment permits the reader to assess to what extent the estimated efficacy of therapy might be underestimated in comparison with ideal circumstances.
If available, the number of people assessed for eligibility should also be reported. Although this number is relevant to external validity only and is arguably less important than the other counts,195 it is a useful indicator of whether trial participants were likely to be representative of all eligible participants.
A review of RCTs published in five leading general and internal medicine journals in 1998 found that reporting of the flow of participants was often incomplete, particularly with regard to the number of participants receiving the allocated intervention and the number lost to follow-up.51 Even information as basic as the number of participants who underwent randomisation and the number excluded from analyses was not available in up to 20% of articles.51 Reporting was considerably more thorough in articles that included a diagram of the flow of participants through a trial, as recommended by CONSORT. This study informed the design of the revised flow diagram in the revised CONSORT statement.52 53 54 The suggested template is shown in fig 11,, and the counts required are described in detail in table 33.
Some information, such as the number of individuals assessed for eligibility, may not always be known,14 and, depending on the nature of a trial, some counts may be more relevant than others. It will sometimes be useful or necessary to adapt the structure of the flow diagram to a particular trial. In some situations, other information may usefully be added. For example, the flow diagram of a parallel group trial of minimal surgery compared with medical management for chronic gastro-oesophageal reflux also included a parallel non-randomised preference group (see fig 3).196
The exact form and content of the flow diagram may be varied according to specific features of a trial. For example, many trials of surgery or vaccination do not include the possibility of discontinuation. Although CONSORT strongly recommends using this graphical device to communicate participant flow throughout the study, there is no specific, prescribed format.
Example/s:
Flow diagram of a multicentre trial of fractional flow reserve versus angiography for guiding percutaneous coronary intervention (PCI) (adapted from Tonino et al313). The diagram includes detailed information on the excluded participants. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2844943/figure/fig2/.
13b Participant flow
For each group, losses and exclusions after randomization, together with reason.
Some protocol deviations may be reported in the flow diagram (see item 13a)—for example, participants who did not receive the intended intervention. If participants were excluded after randomisation (contrary to the intention-to-treat principle) because they were found not to meet eligibility criteria (see item 16), they should be included in the flow diagram. Use of the term “protocol deviation” in published articles is not sufficient to justify exclusion of participants after randomisation. The nature of the protocol deviation and the exact reason for excluding participants after randomisation should always be reported.
Example/s:
There was only one protocol deviation, in a woman in the study group. She had an abnormal pelvic measurement and was scheduled for elective caesarean section. However, the attending obstetrician judged a trial of labour acceptable; caesarean section was done when there was no progress in the first stage of labour.
14a Recruitment
Dates defining the periods of recruitment and follow-up.
Knowing when a study took place and over what period participants were recruited places the study in historical context. Medical and surgical therapies, including concurrent therapies, evolve continuously and may affect the routine care given to participants during a trial. Knowing the rate at which participants were recruited may also be useful, especially to other investigators.
The length of follow-up is not always a fixed period after randomisation. In many RCTs in which the outcome is time to an event, follow-up of all participants is ended on a specific date. This date should be given, and it is also useful to report the minimum, maximum, and median duration of follow-up.200 201
A review of reports in oncology journals that used survival analysis, most of which were not RCTs, 201 found that nearly 80% (104 of 132 reports) included the starting and ending dates for accrual of patients, but only 24% (32 of 132 reports) also reported the date on which follow-up ended.
Example/s:
Age-eligible participants were recruited … from February 1993 to September 1994 … Participants attended clinic visits at the time of randomisation (baseline) and at 6-month intervals for 3 years.
14b Recruitment
Why the trial ended or was stopped.
Arguably, trialists who arbitrarily conduct unplanned interim analyses after very few events accrue using no statistical guidelines run a high risk of “catching” the data at a random extreme, which likely represents a large overestimate of treatment benefit.204
Readers will likely draw weaker inferences from a trial that was truncated in a data-driven manner versus one that reports its findings after reaching a goal independent of results. Thus, RCTs should indicate why the trial came to an end (see box 5). The report should also disclose factors extrinsic to the trial that affected the decision to stop the trial, and who made the decision to stop the trial, including reporting the role the funding agency played in the deliberations and in the decision to stop the trial.134
A systematic review of 143 RCTs stopped earlier than planned for benefit found that these trials reported stopping after accruing a median of 66 events, estimated a median relative risk of 0.47 and a strong relation between the number of events accrued and the size of the effect, with smaller trials with fewer events yielding the largest treatment effects (odds ratio 31, 95% confidence interval 12 to 82).134 While an increasing number of trials published in high impact medical journals report stopping early, only 0.1% of trials reported stopping early for benefit, which contrasts with estimates arising from simulation studies205 and surveys of data safety and monitoring committees.206 Thus, many trials accruing few participants and reporting large treatment effects may have been stopped earlier than planned but failed to report this action.
Example/s:
At the time of the interim analysis, the total follow-up included an estimated 63% of the total number of patient-years that would have been collected at the end of the study, leading to a threshold value of 0.0095, as determined by the Lan-DeMets alpha-spending function method … At the interim analysis, the RR was 0.37 in the intervention group, as compared with the control group, with a p value of 0.00073, below the threshold value. The Data and Safety Monitoring Board advised the investigators to interrupt the trial and offer circumcision to the control group, who were then asked to come to the investigation centre, where MC (medical circumcision) was advised and proposed … Because the study was interrupted, some participants did not have a full follow-up on that date, and their visits that were not yet completed are described as “planned” in this article.
15. Baseline data
A table showing baseline demographic and clinical characteristics for each group.
Although the eligibility criteria (see item 4a) indicate who was eligible for the trial, it is also important to know the characteristics of the participants who were actually included. This information allows readers, especially clinicians, to judge how relevant the results of a trial might be to an individual patient.
Randomised trials aim to compare groups of participants that differ only with respect to the intervention (treatment). Although proper random assignment prevents selection bias, it does not guarantee that the groups are equivalent at baseline. Any differences in baseline characteristics are, however, the result of chance rather than bias.32 The study groups should be compared at baseline for important demographic and clinical characteristics so that readers can assess how similar they were. Baseline data are especially valuable for outcomes that can also be measured at the start of the trial (such as blood pressure).
Baseline information is most efficiently presented in a table (see table 44).). For continuous variables, such as weight or blood pressure, the variability of the data should be reported, along with average values. Continuous variables can be summarised for each group by the mean and standard deviation. When continuous data have an asymmetrical distribution, a preferable approach may be to quote the median and a centile range (such as the 25th and 75th centiles).177 Standard errors and confidence intervals are not appropriate for describing variability—they are inferential rather than descriptive statistics. Variables with a small number of ordered categories (such as stages of disease I to IV) should not be treated as continuous variables; instead, numbers and proportions should be reported for each category.48 177
Unfortunately significance tests of baseline differences are still common23 32 210; they were reported in half of 50 RCTs trials published in leading general journals in 1997.183 Such significance tests assess the probability that observed baseline differences could have occurred by chance; however, we already know that any differences are caused by chance. Tests of baseline differences are not necessarily wrong, just illogical.211 Such hypothesis testing is superfluous and can mislead investigators and their readers. Rather, comparisons at baseline should be based on consideration of the prognostic strength of the variables measured and the size of any chance imbalances that have occurred.
Example/s:
Example of reporting baseline demographic and clinical characteristics.* (Adapted from table 1 of Yusuf et al209) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2844943/table/tbl4/.
16. Numbers analysed
For each group, number of participants (denominator) included in each analysis and whether the analysis was by original assigned groups.
The number of participants in each group is an essential element of the analyses. Although the flow diagram (see item 13a) may indicate the numbers of participants analysed, these numbers often vary for different outcome measures. The number of participants per group should be given for all analyses. For binary outcomes, (such as risk ratio and risk difference) the denominators or event rates should also be reported. Expressing results as fractions also aids the reader in assessing whether some of the randomly assigned participants were excluded from the analysis. It follows that results should not be presented solely as summary measures, such as relative risks.
Participants may sometimes not receive the full intervention, or some ineligible patients may have been randomly allocated in error. One widely recommended way to handle such issues is to analyse all participants according to their original group assignment, regardless of what subsequently occurred (see box 6). This “intention-to-treat” strategy is not always straightforward to implement. It is common for some patients not to complete a study—they may drop out or be withdrawn from active treatment—and thus are not assessed at the end. If the outcome is mortality, such patients may be included in the analysis based on register information, whereas imputation techniques may need to be used if other outcome data are missing. The term “intention-to-treat analysis” is often inappropriately used—for example, when those who did not receive the first dose of a trial drug are excluded from the analyses.18
Conversely, analysis can be restricted to only participants who fulfil the protocol in terms of eligibility, interventions, and outcome assessment. This analysis is known as an “on-treatment” or “per protocol” analysis. Excluding participants from the analysis can lead to erroneous conclusions. For example, in a trial that compared medical with surgical therapy for carotid stenosis, analysis limited to participants who were available for follow-up showed that surgery reduced the risk for transient ischaemic attack, stroke, and death. However, intention-to-treat analysis based on all participants as originally assigned did not show a superior effect of surgery.214
Intention-to-treat analysis is generally favoured because it avoids bias associated with non-random loss of participants.215 216 217 Regardless of whether authors use the term “intention-to-treat,” they should make clear which and how many participants are included in each analysis (see item 13). Non-compliance with assigned therapy may mean that the intention-to-treat analysis underestimates the potential benefit of the treatment, and additional analyses, such as a per protocol analysis, may therefore be considered.218 219 It should be noted, however, that such analyses are often considerably flawed.220
In a review of 403 RCTs published in 10 leading medical journals in 2002, 249 (62%) reported the use of intention-to-treat analysis for their primary analysis. This proportion was higher for journals adhering to the CONSORT statement (70% v 48%). Among articles that reported the use of intention-to-treat analysis, only 39% actually analysed all participants as randomised, with more than 60% of articles having missing data in their primary analysis.221 Other studies show similar findings.18 222 223 Trials with no reported exclusions are methodologically weaker in other respects than those that report on some excluded participants,173 strongly indicating that at least some researchers who have excluded participants do not report it. Another study found that reporting an intention-to-treat analysis was associated with other aspects of good study design and reporting, such as describing a sample size calculation.
Example/s:
The primary analysis was intention-to-treat and involved all patients who were randomly assigned.
17a Outcomes and estimation
For each primary and secondary outcome, results for each group, and the estimated effect size and its precision (such as 95% confidence interval).
For each outcome, study results should be reported as a summary of the outcome in each group (for example, the number of participants with or without the event and the denominators, or the mean and standard deviation of measurements), together with the contrast between the groups, known as the effect size. For binary outcomes, the effect size could be the risk ratio (relative risk), odds ratio, or risk difference; for survival time data, it could be the hazard ratio or difference in median survival time; and for continuous data, it is usually the difference in means. Confidence intervals should be presented for the contrast between groups. A common error is the presentation of separate confidence intervals for the outcome in each group rather than for the treatment effect.233 Trial results are often more clearly displayed in a table rather than in the text, as shown in tables 55 and 66.
For all outcomes, authors should provide a confidence interval to indicate the precision (uncertainty) of the estimate.48 235 A 95% confidence interval is conventional, but occasionally other levels are used. Many journals require or strongly encourage the use of confidence intervals.236 They are especially valuable in relation to differences that do not meet conventional statistical significance, for which they often indicate that the result does not rule out an important clinical difference. The use of confidence intervals has increased markedly in recent years, although not in all medical specialties.233 Although P values may be provided in addition to confidence intervals, results should not be reported solely as P values.237 238 Results should be reported for all planned primary and secondary end points, not just for analyses that were statistically significant or “interesting.” Selective reporting within a study is a widespread and serious problem.55 57 In trials in which interim analyses were performed, interpretation should focus on the final results at the close of the trial, not the interim results.239
For both binary and survival time data, expressing the results also as the number needed to treat for benefit or harm can be helpful (see item 21).
Example/s:
Example of reporting of summary results for each study group (binary outcomes).* (Adapted from table 2 of Mease et al103) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2844943/table/tbl5/.
17b Outcomes and estimation
For binary outcomes, presentation of both absolute and relative effect sizes is recommended.
When the primary outcome is binary, both the relative effect (risk ratio (relative risk) or odds ratio) and the absolute effect (risk difference) should be reported (with confidence intervals), as neither the relative measure nor the absolute measure alone gives a complete picture of the effect and its implications. Different audiences may prefer either relative or absolute risk, but both doctors and lay people tend to overestimate the effect when it is presented in terms of relative risk.243 244 245 The size of the risk difference is less generalisable to other populations than the relative risk since it depends on the baseline risk in the unexposed group, which tends to vary across populations. For diseases where the outcome is common, a relative risk near unity might indicate clinically important differences in public health terms. In contrast, a large relative risk when the outcome is rare may not be so important for public health (although it may be important to an individual in a high risk category).
Example/s:
The risk of oxygen dependence or death was reduced by 16% (95% CI 25% to 7%). The absolute difference was −6.3% (95% CI −9.9% to −2.7%); early administration to an estimated 16 babies would therefore prevent 1 baby dying or being long-term dependent on oxygen” Table 7: Example of reporting both absolute and relative effect sizes. (Adapted from table 3 of The OSIRIS Collaborative Group242). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2844943/table/tbl7/.
18. Ancillary analyses
Results of any other analyses performed, including subgroup analyses and adjusted analyses, distinguishing pre-specified from exploratory.
Multiple analyses of the same data create a risk for false positive findings.246 Authors should resist the temptation to perform many subgroup analyses.183 185 247 Analyses that were prespecified in the trial protocol (see item 24) are much more reliable than those suggested by the data, and therefore authors should report which analyses were prespecified. If subgroup analyses were undertaken, authors should report which subgroups were examined, why, if they were prespecified, and how many were prespecified. Selective reporting of subgroup analyses could lead to bias.248 When evaluating a subgroup the question is not whether the subgroup shows a statistically significant result but whether the subgroup treatment effects are significantly different from each other. To determine this, a test of interaction is helpful, although the power for such tests is typically low. If formal evaluations of interaction are undertaken (see item 12b) they should be reported as the estimated difference in the intervention effect in each subgroup (with a confidence interval), not just as P values.
In one survey, 35 of 50 trial reports included subgroup analyses, of which only 42% used tests of interaction.183 It was often difficult to determine whether subgroup analyses had been specified in the protocol. In another survey of surgical trials published in high impact journals, 27 of 72 trials reported 54 subgroup analyses, of which 91% were post hoc and only 6% of subgroup analyses used a test of interaction to assess whether a subgroup effect existed.249
Similar recommendations apply to analyses in which adjustment was made for baseline variables. If done, both unadjusted and adjusted analyses should be reported. Authors should indicate whether adjusted analyses, including the choice of variables to adjust for, were planned. Ideally, the trial protocol should state whether adjustment is made for nominated baseline variables by using analysis of covariance.187 Adjustment for variables because they differ significantly at baseline is likely to bias the estimated treatment effect.187 A survey found that unacknowledged discrepancies between protocols and publications were found for all 25 trials reporting subgroup analyses and for 23 of 28 trials reporting adjusted analyses.
Example/s:
On the basis of a study that suggested perioperative β-blocker efficacy might vary across baseline risk, we prespecified our primary subgroup analysis on the basis of the revised cardiac risk index scoring system. We also did prespecified secondary subgroup analyses based on sex, type of surgery, and use of an epidural or spinal anaesthetic. For all subgroup analyses, we used Cox proportional hazard models that incorporated tests for interactions, designated to be significant at p<0.05 … Figure 3 shows the results of our prespecified subgroup analyses and indicates consistency of effects … Our subgroup analyses were underpowered to detect the modest differences in subgroup effects that one might expect to detect if there was a true subgroup effect.
19. Harms
All important harms or unintended effects in each group (For specific guidance see CONSORT for harms).
Readers need information about the harms as well as the benefits of interventions to make rational and balanced decisions. The existence and nature of adverse effects can have a major impact on whether a particular intervention will be deemed acceptable and useful. Not all reported adverse events observed during a trial are necessarily a consequence of the intervention; some may be a consequence of the condition being treated. Randomised trials offer the best approach for providing safety data as well as efficacy data, although they cannot detect rare harms.
Many reports of RCTs provide inadequate information on adverse events. A survey of 192 drug trials published from 1967 to 1999 showed that only 39% had adequate reporting of clinical adverse events and 29% had adequate reporting of laboratory defined toxicity.72 More recently, a comparison between the adverse event data submitted to the trials database of the National Cancer Institute, which sponsored the trials, and the information reported in journal articles found that low grade adverse events were underreported in journal articles. High grade events (Common Toxicity Criteria grades 3 to 5) were reported inconsistently in the articles, and the information regarding attribution to investigational drugs was incomplete.251 Moreover, a review of trials published in six general medical journals in 2006 to 2007 found that, although 89% of 133 reports mentioned adverse events, no information on severe adverse events and withdrawal of patients due to an adverse event was given on 27% and 48% of articles, respectively.252
An extension of the CONSORT statement has been developed to provide detailed recommendations on the reporting of harms in randomised trials.42 Recommendations and examples of appropriate reporting are freely available from the CONSORT website (www.consort-statement.org). They complement the CONSORT 2010 Statement and should be consulted, particularly if the study of harms was a key objective. Briefly, if data on adverse events were collected, events should be listed and defined, with reference to standardised criteria where appropriate. The methods used for data collection and attribution of events should be described. For each study arm the absolute risk of each adverse event, using appropriate metrics for recurrent events, and the number of participants withdrawn due to harms should be presented. Finally, authors should provide a balanced discussion of benefits and harms.
Example/s:
The proportion of patients experiencing any adverse event was similar between the rBPI21 [recombinant bactericidal/permeability-increasing protein] and placebo groups: 168 (88.4%) of 190 and 180 (88.7%) of 203, respectively, and it was lower in patients treated with rBPI21 than in those treated with placebo for 11 of 12 body systems … the proportion of patients experiencing a severe adverse event, as judged by the investigators, was numerically lower in the rBPI21 group than the placebo group: 53 (27.9%) of 190 versus 74 (36.5%) of 203 patients, respectively. There were only three serious adverse events reported as drug-related and they all occurred in the placebo group.
Discussion
20. Limitations
Trial limitations, addressing sources of potential bias, imprecision, and, if relevant, multiplicity of analyses.
The discussion sections of scientific reports are often filled with rhetoric supporting the authors’ findings254 and provide little measured argument of the pros and cons of the study and its results. Some journals have attempted to remedy this problem by encouraging more structure to authors’ discussion of their results.255 256 For example, Annals of Internal Medicine recommends that authors structure the discussion section by presenting (1) a brief synopsis of the key findings, (2) consideration of possible mechanisms and explanations, (3) comparison with relevant findings from other published studies (whenever possible including a systematic review combining the results of the current study with the results of all previous relevant studies), (4) limitations of the present study (and methods used to minimise and compensate for those limitations), and (5) a brief section that summarises the clinical and research implications of the work, as appropriate.255 We recommend that authors follow these sensible suggestions, perhaps also using suitable subheadings in the discussion section.
Although discussion of limitations is frequently omitted from research reports,257 identification and discussion of the weaknesses of a study have particular importance.258 For example, a surgical group reported that laparoscopic cholecystectomy, a technically difficult procedure, had significantly lower rates of complications than the more traditional open cholecystectomy for management of acute cholecystitis.259 However, the authors failed to discuss an obvious bias in their results. The study investigators had completed all the laparoscopic cholecystectomies, whereas 80% of the open cholecystectomies had been completed by trainees.
Authors should also discuss any imprecision of the results. Imprecision may arise in connection with several aspects of a study, including measurement of a primary outcome (see item 6a) or diagnosis (see item 4a). Perhaps the scale used was validated on an adult population but used in a paediatric one, or the assessor was not trained in how to administer the instrument.
The difference between statistical significance and clinical importance should always be borne in mind. Authors should particularly avoid the common error of interpreting a non-significant result as indicating equivalence of interventions. The confidence interval (see item 17a) provides valuable insight into whether the trial result is compatible with a clinically important effect, regardless of the P value.120
Authors should exercise special care when evaluating the results of trials with multiple comparisons. Such multiplicity arises from several interventions, outcome measures, time points, subgroup analyses, and other factors. In such circumstances, some statistically significant findings are likely to result from chance alone.
Example/s:
The preponderance of male patients (85%) is a limitation of our study … We used bare-metal stents, since drug-eluting stents were not available until late during accrual. Although the latter factor may be perceived as a limitation, published data indicate no benefit (either short-term or long-term) with respect to death and myocardial infarction in patients with stable coronary artery disease who receive drug-eluting stents, as compared with those who receive bare-metal stents.
21. Generalisability
Generalisability (external validity, applicability) of the trial findings.
External validity, also called generalisability or applicability, is the extent to which the results of a study can be generalised to other circumstances. Internal validity, the extent to which the design and conduct of the trial eliminate the possibility of bias, is a prerequisite for external validity: the results of a flawed trial are invalid and the question of its external validity becomes irrelevant. There is no absolute external validity; the term is meaningful only with regard to clearly specified conditions that were not directly examined in the trial. Can results be generalised to an individual participant or groups that differ from those enrolled in the trial with regard to age, sex, severity of disease, and comorbid conditions? Are the results applicable to other drugs within a class of similar drugs, to a different dose, timing, and route of administration, and to different concomitant therapies? Can similar results be expected at the primary, secondary, and tertiary levels of care? What about the effect on related outcomes that were not assessed in the trial, and the importance of length of follow-up and duration of treatment, especially with respect to harms?
External validity is a matter of judgment and depends on the characteristics of the participants included in the trial, the trial setting, the treatment regimens tested, and the outcomes assessed. It is therefore crucial that adequate information be described about eligibility criteria and the setting and location (see item 4b), the interventions and how they were administered (see item 5), the definition of outcomes (see item 6), and the period of recruitment and follow-up (see item 14). The proportion of control group participants in whom the outcome develops (control group risk) is also important. The proportion of eligible participants who refuse to enter the trial as indicated on the flowchart (see item 13) is relevant for the generalisability of the trial, as it may indicate preferences for or acceptability of an intervention. Similar considerations may apply to clinician preferences.
Several issues are important when results of a trial are applied to an individual patient. Although some variation in treatment response between an individual patient and the patients in a trial or systematic review is to be expected, the differences tend to be in magnitude rather than direction.
Although there are important exceptions, therapies (especially drugs 269) found to be beneficial in a narrow range of patients generally have broader application in actual practice. Frameworks for the evaluation of external validity have been proposed, including qualitative studies, such as in integral “process evaluations” and checklists. Measures that incorporate baseline risk when calculating therapeutic effects, such as the number needed to treat to obtain one additional favourable outcome and the number needed to treat to produce one adverse effect, are helpful in assessing the benefit-to-risk balance in an individual patient or group with characteristics that differ from the typical trial participant.Finally, after deriving patient centred estimates for the potential benefit and harm from an intervention, the clinician must integrate them with the patient’s values and preferences for therapy. Similar considerations apply when assessing the generalisability of results to different settings and interventions.
Example/s:
As the intervention was implemented for both sexes, all ages, all types of sports, and at different levels of sports, the results indicate that the entire range of athletes, from young elite to intermediate and recreational senior athletes, would benefit from using the presented training programme for the prevention of recurrences of ankle sprain. By including non-medically treated and medically treated athletes, we covered a broad spectrum of injury severity. This suggests that the present training programme can be implemented in the treatment of all athletes. Furthermore, as it is reasonable to assume that ankle sprains not related to sports are comparable with those in sports, the programme could benefit the general population.
This replicates and extends the work of Clarke and colleagues and demonstrates that this CB (cognitive behavioural) prevention program can be reliably and effectively delivered in different settings by clinicians outside of the group who originally developed the intervention. The effect size was consistent with those of previously reported, single-site, indicated depression prevention studies and was robust across sites with respect to both depressive disorders and symptoms … In this generalisability trial, we chose a comparison condition that is relevant to public health—usual care … The sample also was predominantly working class to middle class with access to health insurance. Given evidence that CB therapy can be more efficacious for adolescents from homes with higher incomes, it will be important to test the effects of this prevention program with more economically and ethnically diverse samples.
22. Interpretation
Interpretation consistent with results, balancing benefits and harms, and considering other relevant evidence.
Readers will want to know how the present trial’s results relate to those of other RCTs. This can best be achieved by including a formal systematic review in the results or discussion section of the report.83 275 276 277 Such synthesis may be impractical for trial authors, but it is often possible to quote a systematic review of similar trials. A systematic review may help readers assess whether the results of the RCT are similar to those of other trials in the same topic area and whether participants are similar across studies. Reports of RCTs have often not dealt adequately with these points.277 Bayesian methods can be used to statistically combine the trial data with previous evidence.278
We recommend that, at a minimum, the discussion should be as systematic as possible and be based on a comprehensive search, rather than being limited to studies that support the results of the current trial.
Example/s:
Studies published before 1990 suggested that prophylactic immunotherapy also reduced nosocomial infections in very-low-birth-weight infants. However, these studies enrolled small numbers of patients; employed varied designs, preparations, and doses; and included diverse study populations. In this large multicenter, randomised controlled trial, the repeated prophylactic administration of intravenous immune globulin failed to reduce the incidence of nosocomial infections significantly in premature infants weighing 501 to 1500 g at birth.
Other information
23. Registration
Registration number and name of trial registry.
The consequences of non-publication of entire trials,281 282 selective reporting of outcomes within trials, and of per protocol rather than intention-to-treat analysis have been well documented.55 56 283 Covert redundant publication of clinical trials can also cause problems, particularly for authors of systematic reviews when results from the same trial are inadvertently included more than once.284
To minimise or avoid these problems there have been repeated calls over the past 25 years to register clinical trials at their inception, to assign unique trial identification numbers, and to record other basic information about the trial so that essential details are made publicly available.285 286 287 288 Provoked by recent serious problems of withholding data,289 there has been a renewed effort to register randomised trials. Indeed, the World Health Organisation states that “the registration of all interventional trials is a scientific, ethical and moral responsibility” (www.who.int/ictrp/en). By registering a randomised trial, authors typically report a minimal set of information and obtain a unique trial registration number.
In September 2004 the International Committee of Medical Journal Editors (ICMJE) changed their policy, saying that they would consider trials for publication only if they had been registered before the enrolment of the first participant.290 This resulted in a dramatic increase in the number of trials being registered.291 The ICMJE gives guidance on acceptable registries (www.icmje.org/faq.pdf).
In a recent survey of 165 high impact factor medical journals’ instructions to authors, 44 journals specifically stated that all recent clinical trials must be registered as a requirement of submission to that journal.292
Authors should provide the name of the register and the trial’s unique registration number. If authors had not registered their trial they should explicitly state this and give the reason.
Example/s:
The trial is registered at ClinicalTrials.gov, number NCT00244842.
24. Protocol
Where the full trial protocol can be accessed, if available.
A protocol for the complete trial (rather than a protocol of a specific procedure within a trial) is important because it pre-specifies the methods of the randomised trial, such as the primary outcome (see item 6a). Having a protocol can help to restrict the likelihood of undeclared post hoc changes to the trial methods and selective outcome reporting (see item 6b). Elements that may be important for inclusion in the protocol for a randomised trial are described elsewhere.294
There are several options for authors to consider ensuring their trial protocol is accessible to interested readers. As described in the example above, journals reporting a trial’s primary results can make the trial protocol available on their web site. Accessibility to the trial results and protocol is enhanced when the journal is open access. Some journals (such as Trials) publish trial protocols, and such a publication can be referenced when reporting the trial’s principal results. Trial registration (see item 23) will also ensure that many trial protocol details are available, as the minimum trial characteristics included in an approved trial registration database includes several protocol items and results (www.who.int/ictrp/en). Trial investigators may also be able to post their trial protocol on a website through their employer. Whatever mechanism is used, we encourage all trial investigators to make their protocol easily accessible to interested readers.
Example/s:
Full details of the trial protocol can be found in the Supplementary Appendix, available with the full text of this article at www.nejm.org.
25. Funding
Sources of funding and other support (such as supply of drugs), role of funders.
Authors should report the sources of funding for the trial, as this is important information for readers assessing a trial. Studies have showed that research sponsored by the pharmaceutical industry are more likely to produce results favouring the product made by the company sponsoring the research than studies funded by other sources.297 298 299 300 A systematic review of 30 studies on funding found that research funded by the pharmaceutical industry had four times the odds of having outcomes favouring the sponsor than research funded by other sources (odds ratio 4.05, 95% confidence interval 2.98 to 5.51).297 A large proportion of trial publications do not currently report sources of funding. The degree of underreporting is difficult to quantify. A survey of 370 drug trials found that 29% failed to report sources of funding.301 In another survey, of PubMed indexed randomised trials published in December 2000, source of funding was reported for 66% of the 519 trials.16
The level of involvement by a funder and their influence on the design, conduct, analysis, and reporting of a trial varies. It is therefore important that authors describe in detail the role of the funders. If the funder had no such involvement, the authors should state so. Similarly, authors should report any other sources of support, such as supply and preparation of drugs or equipment, or in the analysis of data and writing of the manuscript.
Example/s:
Grant support was received for the intervention from Plan International and for the research from the Wellcome Trust and Joint United Nations Programme on HIV/AIDS (UNAIDS). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
To acknowledge this checklist in your methods, please state "We used the CONSORT checklist when writing our report [citation]". Then cite this checklist as Schulz KF, Altman DG, Moher D, for the CONSORT Group. CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trials.
The CONSORT checklist is distributed under the terms of the Creative Commons Attribution License CC-BY